1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = drawSphere(varargin)
%DRAWSPHERE Draw a sphere as a mesh.
%
% drawSphere(SPHERE)
% Where SPHERE = [XC YC ZC R], draw the sphere centered on the point with
% coordinates [XC YC ZC] and with radius R, using a quad mesh.
%
% drawSphere(CENTER, R)
% Where CENTER = [XC YC ZC], specifies the center and the radius with two
% arguments.
%
% drawSphere(XC, YC, ZC, R)
% Specifiy sphere center and radius as four arguments.
%
% drawSphere(..., NAME, VALUE);
% Specifies one or several options using parameter name-value pairs.
% Available options are usual drawing options, as well as:
% 'nPhi' the number of arcs used for drawing the meridians
% 'nTheta' the number of circles used for drawing the parallels
%
% H = drawSphere(...)
% Return a handle to the graphical object created by the function.
%
% [X Y Z] = drawSphere(...)
% Return the coordinates of the vertices used by the sphere. In this
% case, the sphere is not drawn.
%
% Example
% % Draw four spheres with different centers
% figure(1); clf; hold on;
% drawSphere([10 10 30 5]);
% drawSphere([20 30 10 5]);
% drawSphere([30 30 30 5]);
% drawSphere([30 20 10 5]);
% view([-30 20]); axis equal; l = light;
%
% % Draw sphere with different settings
% figure(1); clf;
% drawSphere([10 20 30 10], 'linestyle', ':', 'facecolor', 'r');
% axis([0 50 0 50 0 50]); axis equal;
% l = light;
%
% % The same, but changes style using graphic handle
% figure(1); clf;
% h = drawSphere([10 20 30 10]);
% set(h, 'linestyle', ':');
% set(h, 'facecolor', 'r');
% axis([0 50 0 50 0 50]); axis equal;
% l = light;
%
% % Draw a sphere with high resolution
% figure(1); clf;
% h = drawSphere([10 20 30 10], 'nPhi', 360, 'nTheta', 180);
% l = light; view(3);
%
%
% See also
% spheres, circles3d, sphere, drawEllipsoid
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2005-02-17
% Copyright 2005-2023 INRA - TPV URPOI - BIA IMASTE
% extract handle of axis to draw on
[hAx, varargin] = parseAxisHandle(varargin{:});
% process input options: when a string is found, assumes this is the
% beginning of options
options = {'FaceColor', 'g', 'LineStyle', 'none'};
for i = 1:length(varargin)
if ischar(varargin{i})
if length(varargin) == 1
options = {'FaceColor', varargin{1}, 'LineStyle', 'none'};
else
options = [options(1:end) varargin(i:end)];
end
varargin = varargin(1:i-1);
break;
end
end
% Parse the input (try to extract center coordinates and radius)
if isempty(varargin)
% no input: assumes unit sphere
xc = 0; yc = 0; zc = 0;
r = 1;
elseif length(varargin) == 1
% one argument: concatenates center and radius
sphere = varargin{1};
xc = sphere(:,1);
yc = sphere(:,2);
zc = sphere(:,3);
r = sphere(:,4);
elseif length(varargin) == 2
% two arguments, corresponding to center and radius
center = varargin{1};
xc = center(1);
yc = center(2);
zc = center(3);
r = varargin{2};
elseif length(varargin) == 4
% four arguments, corresponding to XC, YX, ZC and R
xc = varargin{1};
yc = varargin{2};
zc = varargin{3};
r = varargin{4};
else
error('drawSphere: please specify center and radius');
end
% number of meridians
nPhi = 32;
ind = find(strcmpi('nPhi', options(1:2:end)));
if ~isempty(ind)
ind = ind(1);
nPhi = options{2*ind};
options(2*ind-1:2*ind) = [];
end
% number of parallels
nTheta = 16;
ind = find(strcmpi('nTheta', options(1:2:end)));
if ~isempty(ind)
ind = ind(1);
nTheta = options{2*ind};
options(2*ind-1:2*ind) = [];
end
% compute spherical coordinates
theta = linspace(0, pi, nTheta+1);
phi = linspace(0, 2*pi, nPhi+1);
% convert to cartesian coordinates
sintheta = sin(theta);
x = xc + cos(phi')*sintheta*r;
y = yc + sin(phi')*sintheta*r;
z = zc + ones(length(phi),1)*cos(theta)*r;
% Process output
if nargout == 0
% no output: draw the sphere
surf(hAx, x, y, z, options{:});
elseif nargout == 1
% one output: compute
varargout{1} = surf(hAx, x, y, z, options{:});
elseif nargout == 3
varargout{1} = x;
varargout{2} = y;
varargout{3} = z;
end
|