1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [fittedCircle, circleNormal, residuals] = fitCircle3d(pts, varargin)
%FITCIRCLE3D Fit a 3D circle to a set of points.
%
% [FITTEDCIRCLE, CIRCLENORMAL, RESIDUALS] = fitCircle3d(PTS)
%
% Example
% % points on a 2d circle with noise
% nop = randi([5 50],1,1);
% radius = randi([5 25],1,1);
% points2d = circleToPolygon([0 0 radius], nop);
% points2d(1,:) = [];
% points2d = points2d + rand(size(points2d));
% points2d(:,3)=rand(length(nop),1);
% % apply random rotation and translation
% [theta, phi] = randomAngle3d;
% theta = rad2deg(theta);
% phi = rad2deg(phi);
% tfm = eulerAnglesToRotation3d(phi, theta, 0);
% trans = randi([-250 250],3,1);
% tfm(1:3,4)=trans;
% points3d = awgn(transformPoint3d(points2d, tfm),1);
% % fit 3d circle
% [fittedCircle, circleNormal] = fitCircle3d(points3d);
% % plot 3d points and 3d circle
% figure('Color','w'); hold on; axis equal tight; view(3);
% xlabel('X');ylabel('Y');zlabel('Z');
% drawPoint3d(points3d)
% drawCircle3d(fittedCircle, 'k')
% drawVector3d(fittedCircle(1:3), circleNormal*fittedCircle(4))
%
% See also
% circle3dOrigin, circle3dPosition, circle3dPoint, intersectPlaneSphere
% drawCircle3d, drawCircleArc3d, drawEllipse3d
% ------
% Authors: oqilipo
% E-mail: N/A
% Created: 2017-05-09
% Copyright 2017-2023
parser = inputParser;
addRequired(parser, 'pts', @(x) validateattributes(x, {'numeric'},...
{'ncols',3,'real','finite','nonnan'}));
addOptional(parser,'verbose',true,@islogical);
parse(parser,pts,varargin{:});
pts = parser.Results.pts;
verbose = parser.Results.verbose;
% Mean of all points
meanPoint = mean(pts,1);
% Center points by subtracting the meanPoint
centeredPoints = pts - repmat(meanPoint,size(pts,1),1);
% Project 3D data to a plane
[~,~,V]=svd(centeredPoints);
tfmPoints = transformPoint3d(centeredPoints, V');
% Fit a circle to the points in the xy-plane
circleParamter = CircleFitByTaubin(tfmPoints(:,1:2), verbose);
center2d = circleParamter(1:2);
radius=circleParamter(3);
center3d = transformPoint3d([center2d, 0], [inv(V'), meanPoint']);
circleNormal = V(:,3)';
[theta, phi, ~] = cart2sph2(circleNormal);
fittedCircle = [center3d radius rad2deg(theta) rad2deg(phi) 0];
% Residuals
residuals = radius - distancePoints(tfmPoints(:,1:2),center2d);
end
% Circle Fit (Taubin method)
% version 1.0 (2.24 KB) by Nikolai Chernov
% http://www.mathworks.com/matlabcentral/fileexchange/22678
function Par = CircleFitByTaubin(XY, varargin)
%__________________________________________________________________________
%
% Circle fit by Taubin
% G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar
% Space Curves Defined By Implicit Equations, With
% Applications To Edge And Range Image Segmentation",
% IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991)
%
% Input: XY(n,2) is the array of coordinates of n points x(i)=XY(i,1), y(i)=XY(i,2)
%
% Output: Par = [a b R] is the fitting circle:
% center (a,b) and radius R
%
% Note: this fit does not use built-in matrix functions (except "mean"),
% so it can be easily programmed in any programming language
%
%__________________________________________________________________________
parser = inputParser;
addRequired(parser, 'XY', @(x) validateattributes(x, {'numeric'},...
{'ncols',2,'real','finite','nonnan'}));
addOptional(parser,'verbose',true,@islogical);
parse(parser,XY,varargin{:});
XY=parser.Results.XY;
verbose = parser.Results.verbose;
n = size(XY,1); % number of data points
centroid = mean(XY); % the centroid of the data set
% computing moments (note: all moments will be normed, i.e. divided by n)
Mxx = 0; Myy = 0; Mxy = 0; Mxz = 0; Myz = 0; Mzz = 0;
for i=1:n
Xi = XY(i,1) - centroid(1); % centering data
Yi = XY(i,2) - centroid(2); % centering data
Zi = Xi*Xi + Yi*Yi;
Mxy = Mxy + Xi*Yi;
Mxx = Mxx + Xi*Xi;
Myy = Myy + Yi*Yi;
Mxz = Mxz + Xi*Zi;
Myz = Myz + Yi*Zi;
Mzz = Mzz + Zi*Zi;
end
Mxx = Mxx/n;
Myy = Myy/n;
Mxy = Mxy/n;
Mxz = Mxz/n;
Myz = Myz/n;
Mzz = Mzz/n;
% computing the coefficients of the characteristic polynomial
Mz = Mxx + Myy;
Cov_xy = Mxx*Myy - Mxy*Mxy;
A3 = 4*Mz;
A2 = -3*Mz*Mz - Mzz;
A1 = Mzz*Mz + 4*Cov_xy*Mz - Mxz*Mxz - Myz*Myz - Mz*Mz*Mz;
A0 = Mxz*Mxz*Myy + Myz*Myz*Mxx - Mzz*Cov_xy - 2*Mxz*Myz*Mxy + Mz*Mz*Cov_xy;
A22 = A2 + A2;
A33 = A3 + A3 + A3;
xnew = 0;
ynew = 1e+20;
epsilon = 1e-12;
IterMax = 20;
% Newton's method starting at x=0
for iter=1:IterMax
yold = ynew;
ynew = A0 + xnew*(A1 + xnew*(A2 + xnew*A3));
if abs(ynew) > abs(yold)
if verbose
disp('Newton-Taubin goes wrong direction: |ynew| > |yold|');
end
xnew = 0;
break;
end
Dy = A1 + xnew*(A22 + xnew*A33);
xold = xnew;
xnew = xold - ynew/Dy;
if (abs((xnew-xold)/xnew) < epsilon), break, end
if (iter >= IterMax)
if verbose
disp('Newton-Taubin will not converge');
end
xnew = 0;
end
if (xnew<0.)
if verbose
fprintf(1,'Newton-Taubin negative root: x=%f\n',xnew);
end
xnew = 0;
end
end
% computing the circle parameters
DET = xnew*xnew - xnew*Mz + Cov_xy;
Center = [Mxz*(Myy-xnew)-Myz*Mxy , Myz*(Mxx-xnew)-Mxz*Mxy]/DET/2;
Par = [Center+centroid , sqrt(Center*Center'+Mz)];
end
|