File: fitCircle3d.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (206 lines) | stat: -rw-r--r-- 7,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function [fittedCircle, circleNormal, residuals] = fitCircle3d(pts, varargin)
%FITCIRCLE3D Fit a 3D circle to a set of points.
%
%   [FITTEDCIRCLE, CIRCLENORMAL, RESIDUALS] = fitCircle3d(PTS)
%
%   Example
%     % points on a 2d circle with noise
%     nop = randi([5 50],1,1);
%     radius = randi([5 25],1,1);
%     points2d = circleToPolygon([0 0 radius], nop);
%     points2d(1,:) = [];
%     points2d = points2d + rand(size(points2d));
%     points2d(:,3)=rand(length(nop),1);
%     % apply random rotation and translation
%     [theta, phi] = randomAngle3d;
%     theta = rad2deg(theta);
%     phi = rad2deg(phi);
%     tfm = eulerAnglesToRotation3d(phi, theta, 0);
%     trans = randi([-250 250],3,1);
%     tfm(1:3,4)=trans;
%     points3d = awgn(transformPoint3d(points2d, tfm),1);
%     % fit 3d circle
%     [fittedCircle, circleNormal] = fitCircle3d(points3d);
%     % plot 3d points and 3d circle
%     figure('Color','w'); hold on; axis equal tight; view(3);
%     xlabel('X');ylabel('Y');zlabel('Z');
%     drawPoint3d(points3d)
%     drawCircle3d(fittedCircle, 'k')
%     drawVector3d(fittedCircle(1:3), circleNormal*fittedCircle(4))
%
%   See also 
%   circle3dOrigin, circle3dPosition, circle3dPoint, intersectPlaneSphere
%   drawCircle3d, drawCircleArc3d, drawEllipse3d

% ------
% Authors: oqilipo
% E-mail: N/A
% Created: 2017-05-09
% Copyright 2017-2023

parser = inputParser;
addRequired(parser, 'pts', @(x) validateattributes(x, {'numeric'},...
    {'ncols',3,'real','finite','nonnan'}));
addOptional(parser,'verbose',true,@islogical);
parse(parser,pts,varargin{:});
pts = parser.Results.pts;
verbose = parser.Results.verbose;

% Mean of all points
meanPoint = mean(pts,1);

% Center points by subtracting the meanPoint
centeredPoints = pts - repmat(meanPoint,size(pts,1),1);

% Project 3D data to a plane
[~,~,V]=svd(centeredPoints);
tfmPoints = transformPoint3d(centeredPoints, V');

% Fit a circle to the points in the xy-plane
circleParamter = CircleFitByTaubin(tfmPoints(:,1:2), verbose);
center2d = circleParamter(1:2);
radius=circleParamter(3);
center3d = transformPoint3d([center2d, 0], [inv(V'), meanPoint']);
circleNormal = V(:,3)';
[theta, phi, ~] = cart2sph2(circleNormal);
fittedCircle = [center3d radius rad2deg(theta) rad2deg(phi) 0];

% Residuals
residuals = radius - distancePoints(tfmPoints(:,1:2),center2d);

end

% Circle Fit (Taubin method)
% version 1.0 (2.24 KB) by Nikolai Chernov
% http://www.mathworks.com/matlabcentral/fileexchange/22678
function Par = CircleFitByTaubin(XY, varargin)
%__________________________________________________________________________
%
%     Circle fit by Taubin
%      G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar
%                  Space Curves Defined By Implicit Equations, With
%                  Applications To Edge And Range Image Segmentation",
%      IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991)
%
%     Input:  XY(n,2) is the array of coordinates of n points x(i)=XY(i,1), y(i)=XY(i,2)
%
%     Output: Par = [a b R] is the fitting circle:
%                           center (a,b) and radius R
%
%     Note: this fit does not use built-in matrix functions (except "mean"),
%           so it can be easily programmed in any programming language
%
%__________________________________________________________________________

parser = inputParser;
addRequired(parser, 'XY', @(x) validateattributes(x, {'numeric'},...
    {'ncols',2,'real','finite','nonnan'}));
addOptional(parser,'verbose',true,@islogical);
parse(parser,XY,varargin{:});
XY=parser.Results.XY;
verbose = parser.Results.verbose;

n = size(XY,1);  % number of data points

centroid = mean(XY); % the centroid of the data set

%     computing moments (note: all moments will be normed, i.e. divided by n)
Mxx = 0; Myy = 0; Mxy = 0; Mxz = 0; Myz = 0; Mzz = 0;

for i=1:n
    Xi = XY(i,1) - centroid(1);  %  centering data
    Yi = XY(i,2) - centroid(2);  %  centering data
    Zi = Xi*Xi + Yi*Yi;
    Mxy = Mxy + Xi*Yi;
    Mxx = Mxx + Xi*Xi;
    Myy = Myy + Yi*Yi;
    Mxz = Mxz + Xi*Zi;
    Myz = Myz + Yi*Zi;
    Mzz = Mzz + Zi*Zi;
end

Mxx = Mxx/n;
Myy = Myy/n;
Mxy = Mxy/n;
Mxz = Mxz/n;
Myz = Myz/n;
Mzz = Mzz/n;

% computing the coefficients of the characteristic polynomial
Mz = Mxx + Myy;
Cov_xy = Mxx*Myy - Mxy*Mxy;
A3 = 4*Mz;
A2 = -3*Mz*Mz - Mzz;
A1 = Mzz*Mz + 4*Cov_xy*Mz - Mxz*Mxz - Myz*Myz - Mz*Mz*Mz;
A0 = Mxz*Mxz*Myy + Myz*Myz*Mxx - Mzz*Cov_xy - 2*Mxz*Myz*Mxy + Mz*Mz*Cov_xy;
A22 = A2 + A2;
A33 = A3 + A3 + A3;

xnew = 0;
ynew = 1e+20;
epsilon = 1e-12;
IterMax = 20;

% Newton's method starting at x=0
for iter=1:IterMax
    yold = ynew;
    ynew = A0 + xnew*(A1 + xnew*(A2 + xnew*A3));
    if abs(ynew) > abs(yold)
        if verbose
            disp('Newton-Taubin goes wrong direction: |ynew| > |yold|');
        end
        xnew = 0;
        break;
    end
    Dy = A1 + xnew*(A22 + xnew*A33);
    xold = xnew;
    xnew = xold - ynew/Dy;
    if (abs((xnew-xold)/xnew) < epsilon), break, end
    if (iter >= IterMax)
        if verbose
            disp('Newton-Taubin will not converge');
        end
        xnew = 0;
    end
    if (xnew<0.)
        if verbose
            fprintf(1,'Newton-Taubin negative root:  x=%f\n',xnew);
        end
        xnew = 0;
    end
end

% computing the circle parameters
DET = xnew*xnew - xnew*Mz + Cov_xy;
Center = [Mxz*(Myy-xnew)-Myz*Mxy , Myz*(Mxx-xnew)-Mxz*Mxy]/DET/2;

Par = [Center+centroid , sqrt(Center*Center'+Mz)];

end