1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [fittedEllipse3d, TFM3D] = fitEllipse3d(points, varargin)
%FITELLIPSE3D Fit an ellipse to a set of points.
%
% FITTEDELLIPSE3D = fitEllipse3d(POINTS) returns the 3D ellipse fitted to
% a set of 3D points.
%
% Example
% % Create 2D ellipse
% n=randi([10,100]);
% a=randi([30,50]); b=randi([5,25]);
% [x, y] = ellipseToPolygon([0 0 a b 0 ], n);
% % 3D and add some noise
% points = [x, y, zeros(n,1)];
% points=points+(-1+2*rand(n,3));
% % Create a random transformation
% center=-100+200*rand(1,3);
% phi=randi([-180,180]); theta=randi([-180,180]); psi=randi([-180,180]);
% TFM=eulerAnglesToRotation3d(phi, theta, psi, 'ZYZ'); TFM(1:3,4)=center';
% points = transformPoint3d(points, TFM);
% % Fit ellipse
% [fE, fTFM] = fitEllipse3d(points, 'vis', true);
% % Plot reconstructed ellipse
% [fx, fy] = ellipseToPolygon([0 0 fE(4), fE(5) 0 ], n);
% fpoints = transformPoint3d([fx, fy, zeros(n,1)], fTFM);
% drawEllipse3d(fE,'k')
%
% See also
% drawEllipse3d, ellipseToPolygon
%
% Source
% Nested functions are part of the quadfit toolbox by Levente Hunyadi
% https://mathworks.com/matlabcentral/fileexchange/45356
% ------
% Author: oqilipo
% E-mail: N/A
% Created: 2017-08-11
% Copyright 2017-2023
parser = inputParser;
addRequired(parser, 'points', @(x) validateattributes(x, {'numeric'},...
{'ncols',3,'real','finite','nonnan'}));
addOptional(parser,'visualization',false,@islogical);
parse(parser,points,varargin{:});
points=parser.Results.points;
% Mean of all points
meanPoint = mean(points,1);
% Center points around origin
centeredPoints = bsxfun(@minus, points, meanPoint);
% Transformation to x-y plane
[~,~,R]=svd(centeredPoints);
tfmPoints = transformPoint3d(centeredPoints, R');
% Fit ellipse
parEllipse = ellipsefit_direct(tfmPoints(:,1),tfmPoints(:,2));
% Convert to explicit form
[X, Y, A, B, phi2D] = ellipse_im2ex(parEllipse);
% Transform to fitted 2d ellipse
TFM2D = createRotationOz(phi2D);
TFM2D(1:3,4)=[X; Y; 0];
% Transformation back to 3d space
TFM3D = [inv(R'), meanPoint'; 0 0 0 1]*TFM2D;
% Extract translation
center = TFM3D(1:3,4)';
% Extract rotation
TFM3D_ROT=TFM3D(1:3,1:3);
% Convert to euler angles
[PHI, THETA, PSI] = rotation3dToEulerAngles(TFM3D_ROT,'ZYZ');
% Test if psi is correct
TFM3D_test = eulerAnglesToRotation3d(PHI, THETA, PSI,'ZYZ');
if ~all(all(ismembertol(TFM3D_test(1:3,1:3), TFM3D_ROT)))
PSI=-1*PSI;
end
% matGeom format
fittedEllipse3d=[center A B THETA PHI PSI];
%% Visualization
if parser.Results.visualization
figure('Color','w'); axis equal tight; hold on; view(3)
xlabel('x'); ylabel('y'); zlabel('z');
% Input points
scatter3(points(:,1),points(:,2),points(:,3), 'r', 'filled')
% Centered points
scatter3(centeredPoints(:,1),centeredPoints(:,2),centeredPoints(:,3), 'g', 'filled')
% SVD points
scatter3(tfmPoints(:,1),tfmPoints(:,2),tfmPoints(:,3), 'b', 'filled')
% planeProps.FaceAlpha=0.25;
% planeProps.FaceColor='b';
% drawPlane3d([0 0 0 1 0 0 0 1 0],planeProps)
% Fitted ellipse
drawEllipse3d(fittedEllipse3d)
end
%% Nested functions
function p = ellipsefit_direct(x,y)
% Direct least squares fitting of ellipses.
%
% Input arguments:
% x,y;
% x and y coodinates of 2D points
%
% Output arguments:
% p:
% a 6-parameter vector of the algebraic ellipse fit with
% p(1)*x^2 + p(2)*x*y + p(3)*y^2 + p(4)*x + p(5)*y + p(6) = 0
%
% References:
% Andrew W. Fitzgibbon, Maurizio Pilu and Robert B. Fisher, "Direct Least
% Squares Fitting of Ellipses", IEEE Trans. PAMI 21, 1999, pp476-480.
% Copyright 2011 Levente Hunyadi
narginchk(2,2);
validateattributes(x, {'numeric'}, {'real','nonempty','vector'});
validateattributes(y, {'numeric'}, {'real','nonempty','vector'});
x = x(:);
y = y(:);
% normalize data
mx = mean(x);
my = mean(y);
sx = (max(x)-min(x))/2;
sy = (max(y)-min(y))/2;
smax = max(sx,sy);
sx = smax;
sy = smax;
x = (x-mx)/sx;
y = (y-my)/sy;
% build design matrix
D = [ x.^2 x.*y y.^2 x y ones(size(x)) ];
% build scatter matrix
S = D'*D;
% build 6x6 constraint matrix
C = zeros(6,6);
C(1,3) = -2;
C(2,2) = 1;
C(3,1) = -2;
if 1
p = ellipsefit_robust(S,-C);
elseif 0
% solve eigensystem
[gevec, geval] = eig(S,C);
geval = diag(geval);
% extract eigenvector corresponding to unique negative (nonpositive) eigenvalue
p = gevec(:,geval < 0 & ~isinf(geval));
r = geval(geval < 0 & ~isinf(geval));
elseif 0
% formulation as convex optimization problem
gamma = 0; %#ok<*UNRCH>
cvx_begin sdp
variable('gamma');
variable('lambda');
maximize(gamma);
lambda >= 0; %#ok<*VUNUS>
%[ S + lambda*C, zeros(size(S,1),1) ...
%; zeros(1,size(S,2)), lambda - gamma ...
%] >= 0;
S + lambda*C >= 0;
lambda - gamma >= 0;
cvx_end
% recover primal optimal values from dual
[evec, eval] = eig(S + lambda*C);
eval = diag(eval);
[~,ix] = min(abs(eval));
p = evec(:,ix);
end
% unnormalize
p(:) = ...
[ p(1)*sy*sy ...
; p(2)*sx*sy ...
; p(3)*sx*sx ...
; -2*p(1)*sy*sy*mx - p(2)*sx*sy*my + p(4)*sx*sy*sy ...
; -p(2)*sx*sy*mx - 2*p(3)*sx*sx*my + p(5)*sx*sx*sy ...
; p(1)*sy*sy*mx*mx + p(2)*sx*sy*mx*my + p(3)*sx*sx*my*my - p(4)*sx*sy*sy*mx - p(5)*sx*sx*sy*my + p(6)*sx*sx*sy*sy ...
];
p = p ./ norm(p);
end
function p = ellipsefit_robust(R, Q)
% Constrained ellipse fit by solving a modified eigenvalue problem.
% The method is numerically stable.
%
% Input arguments:
% R:
% positive semi-definite data covariance matrix
% Q:
% constraint matrix in parameters x^2, xy, y^2, x, y and 1.
%
% Output arguments:
% p:
% estimated parameters (taking constraints into account)
% References:
% Radim Halir and Jan Flusser, "Numerically stable direct least squares fitting of
% ellipses", 1998
% Copyright 2012 Levente Hunyadi
validateattributes(R, {'numeric'}, {'real','2d','size',[6,6]});
validateattributes(Q, {'numeric'}, {'real','2d','size',[6,6]});
% check that constraint matrix has all zeros except in upper left block
assert( nnz(Q(4:6,:)) == 0 );
assert( nnz(Q(:,4:6)) == 0 );
S1 = R(1:3,1:3); % quadratic part of the scatter matrix
S2 = R(1:3,4:6); % combined part of the scatter matrix
S3 = R(4:6,4:6); % linear part of the scatter matrix
T = -(S3 \ S2'); % for getting a2 from a1
M = S1 + S2 * T; % reduced scatter matrix
M = Q(1:3,1:3) \ M; % premultiply by inv(C1), e.g. M = [M(3,:)./2 ; -M(2,:) ; M(1,:)./2] for an ellipse
[evec,~] = eig(M); % solve eigensystem
% evaluate a'*C*a, e.g. cond = 4 * evec(1,:).*evec(3,:) - evec(2,:).^2 for an ellipse
cond = zeros(1,size(evec,2));
for k = 1 : numel(cond)
cond(k) = evec(:,k)'*Q(1:3,1:3)*evec(:,k);
end
% eigenvector for minimum positive eigenvalue
evec = evec(:,cond > 0);
cond = cond(cond > 0);
[~,ix] = min(cond);
p1 = evec(:,ix); % eigenvector for minimum positive eigenvalue
% ellipse coefficients
p = [p1 ; T * p1];
end
function varargout = ellipse_im2ex(varargin)
% Cast ellipse defined with implicit parameter vector to explicit form.
%
% Copyright 2011 Levente Hunyadi
if nargin > 1
narginchk(6,6);
for k = 1 : 6
validateattributes(varargin{k}, {'numeric'}, {'real','scalar'});
end
[c1,c2,a,b,phi] = ellipse_explicit(varargin{:});
else
narginchk(1,1);
p = varargin{1};
validateattributes(p, {'numeric'}, {'real','vector'});
p = p(:);
validateattributes(p, {'numeric'}, {'size',[6 1]});
[c1,c2,a,b,phi] = ellipse_explicit(p(1), 0.5*p(2), p(3), 0.5*p(4), 0.5*p(5), p(6));
end
if nargout > 1
varargout = num2cell([c1,c2,a,b,phi]);
else
varargout{1} = [c1,c2,a,b,phi];
end
function [c1,c2,semia,semib,phi] = ellipse_explicit(a,b,c,d,f,g)
% Cast ellipse defined with explicit parameter vector to implicit form.
% helper quantities
N = 2*(a*f^2+c*d^2+g*b^2-2*b*d*f-a*c*g);
D = b^2-a*c;
S = realsqrt((a-c)^2+4*b^2);
% semi-axes
ap = realsqrt( N/(D*(S-(a+c))) );
bp = realsqrt( N/(D*(-S-(a+c))) );
semia = max(ap,bp);
semib = min(ap,bp);
% center
c1 = (c*d-b*f)/D;
c2 = (a*f-b*d)/D;
% angle of tilt
if b ~= 0
if abs(a) < abs(c)
phi = 0.5*acot((a-c)/(2*b));
else
phi = 0.5*pi+0.5*acot((a-c)/(2*b));
end
else
if abs(a) < abs(c)
phi = 0;
else % a > c
phi = 0.5*pi;
end
end
end
end
end
|