1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function points = intersectLineCylinder(line, cylinder, varargin)
%INTERSECTLINECYLINDER Compute intersection points between a line and a cylinder.
%
% POINTS = intersectLineCylinder(LINE, CYLINDER)
% Returns intersection points between a line and a cylinder.
%
% Input parameters:
% LINE = [x0 y0 z0 dx dy dz]
% CYLINDER = [x1 y1 z1 x2 y2 z2 R]
%
% Output:
% POINTS = [x1 y1 z1 ; x2 y2 z2]
%
% POINTS = intersectLineCylinder(LINE, CYLINDER, 'checkBounds', B)
% Where B is a boolean (TRUE by default), check if the points are within
% the bounds defined by the two extreme points. If B is false, the
% cylinder is considered to be infinite.
%
% Example
% % Compute intersection between simple vertical cylinder and line
% line = [60 60 60 1 2 3];
% cylinder = [20 50 50 80 50 50 30];
% points = intersectLineCylinder(line, cylinder);
% % Display the different shapes
% figure;
% drawCylinder(cylinder);
% hold on; light;
% axis([0 100 0 100 0 100]);
% drawLine3d(line);
% drawPoint3d(points, 'ko');
%
%
% % Compute intersections when one of the points is outside the
% % cylinder
% line = [80 60 60 1 2 3];
% cylinder = [20 50 50 80 50 50 30];
% intersectLineCylinder(line, cylinder)
% ans =
% 67.8690 35.7380 23.6069
%
%
% See also
% lines3d, intersectLinePlane, drawCylinder, cylinderSurfaceArea
%
% References
% See the link:
% http://www.gamedev.net/community/forums/topic.asp?topic_id=467789
%
% ------
% Author: David Legland, from a file written by Daniel Trauth (RWTH)
% E-mail: david.legland@inrae.fr
% Created: 2007-01-27
% Copyright 2007-2023
%% Parse input arguments
% default arguments
checkBounds = true;
% type of cylinder, one of {'closed', 'open', 'infinite'}
type = 'closed';
% parse inputs
while length(varargin)>1
var = varargin{1};
if strcmpi(var, 'checkbounds')
checkBounds = varargin{2};
elseif strcmpi(var, 'type')
type = varargin{2};
else
error(['Unkown argument: ' var]);
end
varargin(1:2) = [];
end
%% Parse cylinder parameters
% Starting point of the line
l0 = line(1:3);
% Direction vector of the line
dl = line(4:6);
% position of cylinder extremities
c1 = cylinder(1:3);
c2 = cylinder(4:6);
% Direction vector of the cylinder
dc = c2 - c1;
% Radius of the cylinder
r = cylinder(7);
%% Resolution of a quadratic equation to find the increment
% normalisation coefficient corresponding to direction of vector
coef = dc / dot(dc, dc);
% Substitution of parameters
e = dl - dot(dl,dc) * coef;
f = (l0-c1) - dot(l0-c1, dc) * coef;
% Coefficients of 2-nd order equation
A = dot(e, e);
B = 2 * dot(e,f);
C = dot(f,f) - r^2;
% compute discriminant
delta = B^2 - 4*A*C;
% check existence of solution(s)
if delta < 0
points = zeros(0, 3);
return;
end
% extract roots
pos1 = (-B + sqrt(delta)) / (2*A);
pos2 = (-B - sqrt(delta)) / (2*A);
posList = [pos1;pos2];
%% Estimation of point positions
% process the smallest position
pos1 = min(posList);
% Point on the line: l0 + x*dl = p
point1 = l0 + pos1 * dl;
% process the greatest position
pos2 = max(posList);
% Point on the line: l0 + x*dl = p
point2 = l0 + pos2 * dl;
% Format result
points = [point1 ; point2];
%% Check if points are located between bounds
% if checkBounds option is not set, we can simply skip the rest
if ~checkBounds || strncmpi(type, 'infinite', 1)
return;
end
% compute cylinder axis
axis = [c1 dc];
% compute position on axis
ts = linePosition3d(points, axis);
% check bounds for open cylinder
% (keep only intersection points whose projection is between the two
% cylinder extremities)
if strncmpi(type, 'open', 1)
ind = ts>=0 & ts<=1;
points = points(ind, :);
return;
end
% which intersection fall before and after bounds
ind1 = find(ts < 0);
ind2 = find(ts > 1);
% case of both intersection on the same side -> no intersection
if length(ind1) == 2 || length(ind2) == 2
points = zeros(0, 3);
return;
end
% Process the remaining case of closed cylinder
% -> compute eventual intersection(s) with end faces
if ~isempty(ind1)
plane = createPlane(c1, dc);
points(ind1, :) = intersectLinePlane(line, plane);
end
if ~isempty(ind2)
plane = createPlane(c2, dc);
points(ind2, :) = intersectLinePlane(line, plane);
end
|