File: intersectLineSphere.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (125 lines) | stat: -rw-r--r-- 4,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function points = intersectLineSphere(line, sphere, varargin)
%INTERSECTLINESPHERE Return intersection points between a line and a sphere.
%
%   PTS = intersectLineSphere(LINE, SPHERE);
%   Returns the two points which are the intersection of the given line and
%   sphere. 
%   LINE   : [x0 y0 z0  dx dy dz]
%   SPHERE : [xc yc zc  R]
%   PTS     : [x1 y1 z1 ; x2 y2 z2]
%   If there is no intersection between the line and the sphere, return a
%   2-by-3 array containing only NaN.
%
%   Example
%     % draw the intersection between a sphere and a collection of parallel
%     % lines 
%     sphere = [50.12 50.23 50.34 40];
%     [x, y] = meshgrid(10:10:90, 10:10:90);
%     n = numel(x);
%     lines = [x(:) y(:) zeros(n,1) zeros(n,2) ones(n,1)];
%     figure; hold on; axis equal;
%     axis([0 100 0 100 0 100]); view(3);
%     drawSphere(sphere);
%     drawLine3d(lines);
%     pts = intersectLineSphere(lines, sphere);
%     drawPoint3d(pts, 'rx');
%
%     % apply rotation on set of lines to check with non vertical lines
%     rot = eulerAnglesToRotation3d(20, 30, 10);
%     rot2 = recenterTransform3d(rot, [50 50 50]);
%     lines2 = transformLine3d(lines, rot2);
%     figure; hold on; axis equal;
%     axis([0 100 0 100 0 100]); view(3);
%     drawSphere(sphere);
%     drawLine3d(lines2);
%     pts2 = intersectLineSphere(lines2, sphere);
%     drawPoint3d(pts, 'rx');
%
%   See also 
%   spheres, circles3d, intersectPlaneSphere
%

% ------
% Author: David Legland 
% E-mail: david.legland@inrae.fr
% Created: 2005-02-18
% Copyright 2005-2023 INRA - TPV URPOI - BIA IMASTE

%% Process input arguments

% check if user-defined tolerance is given
tol = 1e-14;
if ~isempty(varargin)
    tol = varargin{1};
end

% difference between centers
dc = bsxfun(@minus, line(:, 1:3), sphere(:, 1:3));

% equation coefficients
a = sum(line(:, 4:6) .* line(:, 4:6), 2);
b = 2 * sum(bsxfun(@times, dc, line(:, 4:6)), 2);
c = sum(dc.*dc, 2) - sphere(:,4).*sphere(:,4);

% solve equation
delta = b.*b - 4*a.*c;

% initialize empty results
points = NaN * ones(2 * size(delta, 1), 3);


%% process couples with two intersection points

% process couples with two intersection points
inds = find(delta > tol);
if ~isempty(inds)
    % delta positive: find two roots of second order equation
    u1 = (-b(inds) -sqrt(delta(inds))) / 2 ./ a(inds);
    u2 = (-b(inds) +sqrt(delta(inds))) / 2 ./ a(inds);
    
    % convert into 3D coordinate
    points(inds, :) = line(inds, 1:3) + bsxfun(@times, u1, line(inds, 4:6));
    points(inds+length(delta),:) = line(inds, 1:3) + bsxfun(@times, u2, line(inds, 4:6));
end


%% process couples with one intersection point

% proces couples with two intersection points
inds = find(abs(delta) < tol);
if ~isempty(inds)
    % delta around zero: find unique root, and convert to 3D coord.
    u = -b(inds) / 2 ./ a(inds);
    
    % convert into 3D coordinate
    pts = line(inds, 1:3) + bsxfun(@times, u, line(inds, 4:6));
    points(inds, :) = pts;
    points(inds+length(delta),:) = pts;
end