1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [point, pos, isInside] = intersectLineTriangle3d(line, triangle, varargin)
%INTERSECTLINETRIANGLE3D Intersection point of a 3D line and a 3D triangle.
%
% POINT = intersectLineTriangle3d(LINE, TRI)
% Compute coordinates of the intersection point between the line LINE and
% the triangle TRI.
% LINE is a 1-by-6 row vector given as: [X0 Y0 Z0 DX DY DZ]
% TRI is given either as a row vector [X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3], or as
% a 3-by-3 array, each row containing coordinates of one of the triangle
% vertices.
% The result is a 1-by-3 array containing coordinates of the intesection
% point, or [NaN NaN NaN] if the line and the triangle do not intersect.
%
% [POINT POS] = intersectLineTriangle3d(LINE, TRI)
% Also returns the position of the intersection point on the line, or NaN
% if the line and the supporting plane of the triangle are parallel.
%
% [POINT POS ISINSIDE] = intersectLineTriangle3d(LINE, TRI)
% Also returns a boolean value, set to true if the line and the triangle
% intersect each other. Can be used for testing validity of result.
%
% Example
% line = [1 1 0 0 0 1];
% tri = [0 0 5;5 0 0;0 5 0];
% intersectLineTriangle3d(line, tri)
% ans =
% 1 1 3
%
% See also
% points3d, lines3d, polygons3d, intersectRayPolygon3d,
% distancePointTriangle3d
%
% References
% Algorithm adapted from SoftSurfer Ray/Segment-Triangle intersection
% http://softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2011-04-08, using Matlab 7.9.0.529 (R2009b)
% Copyright 2011-2023 INRA - Cepia Software Platform
%% Default values
% default return value
point = [NaN NaN NaN];
pos = NaN;
isInside = false;
tol = 1e-13;
if ~isempty(varargin)
tol = varargin{1};
end
%% Process inputs
% triangle edge vectors
if size(triangle, 2) > 3
% triangle is given as a 1-by-9 row vector
t0 = triangle(1:3);
u = triangle(4:6) - t0;
v = triangle(7:9) - t0;
else
% triangle is given as a 3-by-3 array
t0 = triangle(1, 1:3);
u = triangle(2, 1:3) - t0;
v = triangle(3, 1:3) - t0;
end
%% Compute intersection
% triangle normal
n = cross(u, v);
% test for degenerate case of flat triangle
if vectorNorm3d(n) < tol
return;
end
% line direction vector
dir = line(4:6);
% vector between triangle origin and line origin
w0 = line(1:3) - t0;
% compute projection of each vector on the plane normal
a = -dot(n, w0);
b = dot(n, dir);
% test case of line parallel to the triangle
if abs(b) < tol
return;
end
% compute intersection point of line with supporting plane
% If r < 0: point before ray
% If r > 1: point after edge
pos = a / b;
% coordinates of intersection point
point = line(1:3) + pos * dir;
%% test if intersection point is inside triangle
% normalize direction vectors of triangle edges
uu = dot(u, u);
uv = dot(u, v);
vv = dot(v, v);
% coordinates of vector v in triangle basis
w = point - t0;
wu = dot(w, u);
wv = dot(w, v);
% normalization constant
D = uv^2 - uu * vv;
% test first coordinate
s = (uv * wv - vv * wu) / D;
if s < 0.0 || s > 1.0
point = [NaN NaN NaN];
pos = NaN;
return;
end
% test second coordinate, and third triangle edge
t = (uv * wu - uu * wv) / D;
if t < 0.0 || (s + t) > 1.0
point = [NaN NaN NaN];
pos = NaN;
return;
end
% set the validity flag
isInside = true;
|