1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function b = isPointOnEdge3d(point, edge, varargin)
%ISPOINTONEDGE3D Test if a 3D point belongs to an edge.
%
% Usage
% B = isPointOnEdge3d(POINT, EDGE)
% B = isPointOnEdge3d(POINT, EDGE, TOL)
%
% Description
% B = isPointOnEdge3d(POINT, EDGE)
% with POINT being [xp yp zp], and EDGE being [x1 y1 z1 x2 y2 z2],
% returns TRUE if the point is located on the edge, and FALSE otherwise.
%
% B = isPointOnEdge3d(POINT, EDGE, TOL)
% Specify an optilonal tolerance value TOL. The tolerance is given as a
% fraction of the norm of the edge direction vector. Default is 1e-14.
%
% B = isPointOnEdge3d(POINTARRAY, EDGE)
% B = isPointOnEdge3d(POINT, EDGEARRAY)
% When one of the inputs has several rows, return the result of the test
% for each element of the array tested against the single parameter.
%
% B = isPointOnEdge3d(POINTARRAY, EDGEARRAY)
% When both POINTARRAY and EDGEARRAY have the same number of rows,
% returns a column vector with the same number of rows.
% When the number of rows are different and both greater than 1, returns
% a Np-by-Ne matrix of booleans, containing the result for each couple of
% point and edge.
%
% Examples
% % create a point array
% points = [10 10 20;15 10 20; 30 10 20];
% % create an edge array
% vertices = [10 10 20;20 10 20;20 20 20;10 20 20];
% edges = [vertices vertices([2:end 1], :)];
%
% % Test one point and one edge
% isPointOnEdge3d(points(1,:), edges(1,:))
% ans =
% 1
% isPointOnEdge3d(points(3,:), edges(1,:))
% ans =
% 0
%
% % Test one point and several edges
% isPointOnEdge3d(points(1,:), edges)'
% ans =
% 1 0 0 1
%
% % Test several points and one edge
% isPointOnEdge3d(points, edges(1,:))'
% ans =
% 1 1 0
%
% % Test N points and N edges
% isPointOnEdge3d(points, edges(1:3,:))'
% ans =
% 1 0 0
%
% % Test NP points and NE edges
% isPointOnEdge3d(points, edges)
% ans =
% 1 0 0 1
% 1 0 0 0
% 0 0 0 0
%
%
% See also
% edges3d, points3d, isPointOnLine3d
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2021-02-24, using Matlab 9.9.0.1570001 (R2020b) Update 4
% Copyright 2021-2023 INRAE - BIA-BIBS
% extract computation tolerance
tol = 1e-14;
if ~isempty(varargin)
tol = varargin{1};
end
% supporting line of the edge
line = edgeToLine3d(edge);
% check if point belong to supporting line
onLine = isPointOnLine3d(point, line, tol);
% check if position is within the [0 1] bounds
pos = linePosition3d(point, line);
withinBounds = pos > -tol & pos < 1+tol;
b = onLine & withinBounds;
|