1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [germs, germPaths] = centroidalVoronoi2d(germs, poly, varargin)
%CENTROIDALVORONOI2D Centroidal Voronoi tesselation within a polygon.
%
% PTS = centroidalVoronoi2d(NPTS, POLY)
% Generate points in a polygon based on centroidal voronoi tesselation.
% Centroidal germs can be computed by using the Llyod's algorithm:
% 1) initial germs are chosen at random within polygon
% 2) voronoi polygon of the germs is computed
% 3) the centroids of each domain are computed, and used as germs of the
% next iteration
%
% [PTS, PATHLIST] = centroidalVoronoi2d(NPTS, POLY)
% Also returns the path of each germs at each iteration. The result
% PATHLIST is a cell array with as many cells as the number of germs,
% containing in each cell the successive positions of the germ.
%
% PTS = centroidalVoronoi2d(.., PARAM, VALUE)
% Specify one or several optional arguments. PARAM can be one of:
% * 'nIter' specifies the number of iterations of the algorithm
% (default is 50)
% * 'verbose' display iteration number. Default is false.
%
% Example
% poly = ellipseToPolygon([50 50 40 30 20], 200);
% nGerms = 100;
% germs = centroidalVoronoi2d(nGerms, poly);
% figure; hold on;
% drawPolygon(poly, 'k');
% drawPoint(germs, 'bo');
% axis equal; axis([0 100 10 90]);
% % extract regions of the CVD
% box = polygonBounds(poly);
% [n, e] = boundedVoronoi2d(box, germs);
% [n2, e2] = clipGraphPolygon(n, e, poly);
% drawGraphEdges(n2, e2, 'b');
%
% See also
% graphs, boundedVoronoi2d, centroidalVoronoi2d_MC
%
% Rewritten from programs found in
% http://people.scs.fsu.edu/~burkardt/m_src/cvt/cvt.html
%
% Reference:
% Qiang Du, Vance Faber, and Max Gunzburger,
% Centroidal Voronoi Tessellations: Applications and Algorithms,
% SIAM Review, Volume 41, 1999, pages 637-676.
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2012-02-23, using Matlab 7.9.0.529 (R2009b)
% Copyright 2012-2023 INRA - Cepia Software Platform
%% Parse input arguments
% Number of germs
if isscalar(germs)
nGerms = germs;
germs = [];
else
nGerms = size(germs, 1);
end
% Number of iterations
nIter = 50;
verbose = false;
keepPaths = nargout > 1;
while length(varargin) > 1
paramName = varargin{1};
switch lower(paramName)
case 'verbose'
verbose = varargin{2};
case 'niter'
nIter = varargin{2};
otherwise
error(['Unknown parameter name: ' paramName]);
end
varargin(1:2) = [];
end
%% Initialisations
% bounding box of polygon
bbox = polygonBounds(poly);
% init germs if needed
if isempty(germs)
germs = generatePointsInPoly(nGerms);
end
germIters = cell(nIter, 1);
%% Iteration of the Lloyd algorithm
for i = 1:nIter
if verbose
disp(sprintf('Iteration: %d/%d', i, nIter)); %#ok<DSPS>
end
if keepPaths
germIters{i} = germs;
end
% Compute Clipped Voronoi diagram of germs
if verbose
disp(' compute Voronoi Diagram');
end
[n, e, f] = boundedVoronoi2d(bbox, germs);
[n2, e2, f2] = clipMesh2dPolygon(n, e, f, poly); %#ok<ASGLU>
% update the position of each germ
if verbose
disp(' compute centroids');
end
for iGerm = 1:nGerms
polygon = n2(f2{iGerm}, :);
germs(iGerm,:) = polygonCentroid(polygon);
end
end
%% Evenutally compute germs trajectories
if nargout > 1
% init
germPaths = cell(nGerms, 1);
path = zeros(nIter+1, 2);
% Iteration on germs
for i = 1:nGerms
% create path corresponding to germ
for j = 1:nIter
pts = germIters{j};
path(j,:) = pts(i,:);
end
path(nIter+1, :) = germs(i,:);
germPaths{i} = path;
end
end
function pts = generatePointsInPoly(nPts)
% extreme coordinates
xmin = bbox(1); xmax = bbox(2);
ymin = bbox(3); ymax = bbox(4);
% compute size of box
dx = xmax - xmin;
dy = ymax - ymin;
% allocate memory for result
pts = zeros(nPts, 2);
% iterate until all points have been sampled within the polygon
ind = (1:nPts)';
while ~isempty(ind)
NI = length(ind);
x = rand(NI, 1) * dx + xmin;
y = rand(NI, 1) * dy + ymin;
pts(ind, :) = [x y];
ind = ind(~polygonContains(poly, pts(ind, :)));
end
end
end
|