File: centroidalVoronoi2d_MC.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (272 lines) | stat: -rw-r--r-- 8,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function [germs, germPaths] = centroidalVoronoi2d_MC(germs, poly, varargin)
%CENTROIDALVORONOI2D_MC Centroidal Voronoi tesselation by Monte-Carlo.
%
%   PTS = centroidalVoronoi2d_MC(NPTS, POLY)
%   Generate points in a polygon based on centroidal voronoi tesselation.
%   Centroidal germs can be computed by using the Llyod's algorithm:
%   1) initial germs are chosen at random within polygon
%   2) voronoi polygon of the germs is computed
%   3) the centroids of each domain are computed, and used as germs of the
%   next iteration
%
%   This version uses a Monte-Carlo version of Llyod's algorithm. The
%   centroids are not computed explicitly, but approximated by sampling N
%   points within the bounding polygon. 
%
%   [PTS, PATHLIST] = centroidalVoronoi2d_MC(NPTS, POLY)
%   Also returns the path of each germs at each iteration. The result
%   PATHLIST is a cell array with as many cells as the number of germs,
%   containing in each cell the successive positions of the germ.
%
%   PTS = centroidalVoronoi2d_MC(.., PARAM, VALUE)
%   Specify one or several optional arguments. PARAM can be one of:
%   * 'nIter'   specifies the number of iterations of the algorithm
%       (default is 50)
%   * 'nPoints' number of points for updating positions of germs at each
%       iteration. Default is 200 times the number of germs.
%   * 'verbose' display iteration number. Default is false.
%
%   Example
%     poly = ellipseToPolygon([50 50 40 30 20], 200);
%     nGerms = 100;
%     germs = centroidalVoronoi2d(nGerms, poly);
%     figure; hold on;
%     drawPolygon(poly, 'k');
%     drawPoint(germs, 'bo');
%     axis equal; axis([0 100 10 90]);
%     % extract regions of the CVD
%     box = polygonBounds(poly);
%     [n, e] = boundedVoronoi2d(box, germs);
%     [n2, e2] = clipGraphPolygon(n, e, poly);
%     drawGraphEdges(n2, e2, 'b');
%
%   See also 
%   graphs, boundedVoronoi2d, centroidalVoronoi2d
%
%   Rewritten from programs found in
%   http://people.scs.fsu.edu/~burkardt/m_src/cvt/cvt.html
%
%   Reference:
%    Qiang Du, Vance Faber, and Max Gunzburger,
%    Centroidal Voronoi Tessellations: Applications and Algorithms,
%    SIAM Review, Volume 41, 1999, pages 637-676.
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2012-02-23, using Matlab 7.9.0.529 (R2009b)
% Copyright 2012-2023 INRA - Cepia Software Platform

%% Parse input arguments

% number of germs
if isscalar(germs)
    nGerms = germs;
    germs = [];
else
    nGerms = size(germs, 1);
end

% random point generator
% Should be either empty (-> use random generator) or be an instance of
% quasi-random sequence generator sucha as haltonset or sobolset.
generator = [];

% Number of points
nPts = 200 * nGerms;

% Number of iterations
nIter = 50;

verbose = false;

keepPaths = nargout > 1;

while length(varargin) > 1
    paramName = varargin{1};
    switch lower(paramName)
        case 'verbose'
            verbose = varargin{2};
        case 'niter'
            nIter = varargin{2};
        case 'npoints'
            nPts = varargin{2};
        case 'generator'
            generator = varargin{2};

            % ensure generator is a stream
            if isa(generator, 'qrandset')
                generator = qrandstream(generator);
            elseif isa(generator, 'qrandstream')
                % ok, nothing to do...
            else
                error('quasi-random generator is not properly specified');
            end
            
        otherwise
            error(['Unknown parameter name: ' paramName]);
    end

    varargin(1:2) = [];
end


%% Initialisations

% bounding box of polygon
box = polygonBounds(poly);

% init germs if needed
if isempty(germs)
    if isempty(generator)
        germs = generatePointsInPoly(nGerms);
    else
        germs = generateQRandPointsInPoly(nGerms);
    end
end
germIters = cell(nIter, 1);


%% Iteration of the Lloyd algorithm

for i = 1:nIter
     if verbose
        disp(sprintf('Iteration: %d/%d', i, nIter)); %#ok<DSPS>
    end
    
    if keepPaths
        germIters{i} = germs;
    end
    
    % random uniform points in polygon
    if verbose
        disp('  generate points');
    end
    if isempty(generator)
        points = generatePointsInPoly(nPts);
    else
        points = generateQRandPointsInPoly(nPts);
    end
    
    % for each point, determines index of the closest germ
    if verbose
        disp('  find closest germ');
    end
    ind = zeros(nPts, 1);
    for iPoint = 1:nPts
        x0 = points(iPoint, 1);
        y0 = points(iPoint, 2);
        [tmp, ind(iPoint)] = min((germs(:,1)-x0).^2 + (germs(:,2)-y0).^2); %#ok<ASGLU>
    end

    % update the position of each germ
    if verbose
        disp('  update germ position');
    end
    for iGerm = 1:nGerms
        germs(iGerm,:) = centroid(points(ind == iGerm, :));
    end
    
end


%% Evenutally compute germs trajectories

if nargout > 1
    % init
    germPaths = cell(nGerms, 1);
    path = zeros(nIter+1, 2);
    
    % Iteration on germs
    for i = 1:nGerms
        
        % create path corresponding to germ
        for j = 1:nIter
            pts = germIters{j};
            path(j,:) = pts(i,:);
        end
        path(nIter+1, :) = germs(i,:);
        
        germPaths{i} = path;
    end
end

function pts = generatePointsInPoly(nPts)
    % extreme coordinates
    xmin = box(1);  xmax = box(2);
    ymin = box(3);  ymax = box(4);
    
    % compute size of box
    dx = xmax - xmin;
    dy = ymax - ymin;
    
    % allocate memory for result
    pts = zeros(nPts, 2);

    % iterate until all points have been sampled within the polygon
    ind = (1:nPts)';
    while ~isempty(ind)
        NI = length(ind);
        x = rand(NI, 1) * dx + xmin;
        y = rand(NI, 1) * dy + ymin;
        pts(ind, :) = [x y];
        
        ind = ind(~polygonContains(poly, pts(ind, :)));
    end
end

function pts = generateQRandPointsInPoly(nPts)
    % extreme coordinates
    xmin = box(1);  xmax = box(2);
    ymin = box(3);  ymax = box(4);
    
    % compute size of box
    dx = xmax - xmin;
    dy = ymax - ymin;
    
    % allocate memory for result
    pts = zeros(nPts, 2);

    % iterate until all points have been sampled within the polygon
    ind = (1:nPts)';
    while ~isempty(ind)
        NI = length(ind);
        pts0 = qrand(generator, NI);
        x = pts0(:, 1) * dx + xmin;
        y = pts0(:, 2) * dy + ymin;
        pts(ind, :) = [x y];
        
        ind = ind(~polygonContains(poly, pts(ind, :)));
    end
end

end