1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [avgMesh, distsIters, verticesIters] = averageMesh(meshList, varargin)
%AVERAGEMESH Compute average mesh from a list of meshes.
%
% AVGMESH = averageMesh(MESHLIST)
% Where MESHLIST is a cell array of meshes, computes an average mesh that
% minimizes the sum of squared distances between average mesh vertices
% and all other mesh vertices.
% The method is to choose an arbitrary reference mesh, and to iterate a
% series of smoothin of the reference mesh, computation of nearest vertex
% neighbors, and computing average position of nearest neighbors.
%
% [AVGMESH, DISTS] = averageMesh(MESHLIST)
% Returns also a cell array containing for each iteration, the standard
% deviation of distances to other individual meshes.
%
% [AVGMESH, DISTS, VERT_ITERS] = averageMesh(MESHLIST)
% Also returns for each iteration, the positions of the average vertices.
%
% [AVGMESH, DISTS] = averageMesh(..., PNAME, PVALUE)
% Provides addition options are parameter name-value pairs. Available
% options are:
% * verbose: (logical, default false) display or not information about
% process
% * nIters: number of smooth-projection iterations to perform. Default
% value is 10.
% * smoothingIteration: the number of smoothing operations to apply on
% average mesh at each iteration. Default value is 3.
%
%
% Example
% averageMesh
%
% See also
% meshes3d, smoothMesh
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2020-01-31, using Matlab 9.7.0.1247435 (R2019b) Update 2
% Copyright 2020-2023 INRAE - BIA Research Unit - BIBS Platform (Nantes)
%% Parse input values
% default values
nIters = 10;
verbose = false;
smoothingIterations = 3;
% parse input arguments
while length(varargin) > 1
name = varargin{1};
if ~ischar(name)
error('require parameter name-value pairs');
end
if strcmpi(name, 'verbose')
verbose = varargin{2};
elseif strcmpi(name, 'nIters')
nIters = varargin{2};
elseif strcmpi(name, 'smoothingIterations')
smoothingIterations = varargin{2};
else
error(['Unknown parameter name: ' name]);
end
varargin(1:2) = [];
end
%% Initialisations
nMeshes = length(meshList);
% initialize kd-trees to accelerate nearest-neighbor searches
treeList = cell(nMeshes, 1);
for iMesh = 1:nMeshes
treeList{iMesh} = KDTreeSearcher(meshList{iMesh}.vertices);
end
% choose arbitrary initial mesh
avgMesh = struct('vertices', meshList{1}.vertices, 'faces', meshList{1}.faces);
verticesIters = cell(1, nIters);
distsIters = cell(1, nIters);
%% Main iteration
% iterates smoothing + computation of average projections
for iIter = 1:nIters
if verbose
fprintf('iter %d/%d\n', iIter, nIters);
end
% apply smoothing to current average mesh
avgMesh = smoothMesh(avgMesh, smoothingIterations);
% create new array for average vertices
newVerts = zeros(size(avgMesh.vertices));
dists = zeros(size(avgMesh.vertices, 1), 1);
% iterate over all meshes
for iMesh = 1:nMeshes
if verbose
fprintf(' mesh %d/%d\n', iMesh, nMeshes);
end
% for each vertex of reference mesh, find index of closest vertex
% in current mesh
inds = knnsearch(treeList{iMesh}, avgMesh.vertices);
% keep position of closest vertex to update new position
closest = treeList{iMesh}.X(inds,:);
newVerts = newVerts + closest;
% keep distance to closest index to build variability map
dists = dists + sum((closest - avgMesh.vertices).^2, 2);
end
% update position of new vertices
newVerts = newVerts / nMeshes;
verticesIters{iIter} = newVerts;
avgMesh.vertices = newVerts;
% keep list of distances
dists = sqrt(dists / nMeshes);
distsIters{iIter} = dists;
end
% figure; drawMesh(refMesh, 'lineStyle', 'none', 'faceColor', [.5 .5 .5])
% axis equal; view(3); hold on; axis([-2.5 2.5 -2 2 -3.5 3.5]); light;
% lighting gouraud
% title('Average mesh');
% print(gcf, 'averageMesh_initial.png', '-dpng');
|