1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [dist, proj] = distancePointMesh(points, vertices, faces, varargin)
%DISTANCEPOINTMESH Shortest distance between a (3D) point and a triangle mesh.
%
% DIST = distancePointMesh(POINTS, VERTICES, FACES)
% Returns the shortest distance between the query point(s) POINTS and the
% triangular mesh defined by the set of vertex coordinates VERTICES and
% the set of faces FACES. POINTS is a NP-by-3 array, VERTICES is a
% NV-by-3 array, and FACES is a NF-by-3 array of vertex indices.
% If FACES is NF-by-4 array, it is converted to a (NF*2)-by-3 array.
% DIST is the NP-by-1 vector of distances.
%
% [DIST, PROJ] = distancePointMesh(...)
% Also returns the NP-by-3 projection of the query point(s) on the
% triangular mesh.
%
% ... = distancePointMesh(..., 'algorithm', ALGO)
% Allows to choose the type of algorithm. Options are:
% * sequential: process each face sequentially, using the function
% distancePointTriangle3d
% * vectorized: vectorized algorithm, usually faster for large number
% of faces
% * auto: (default) automatically choose the most appropriate
% between sequential and vectorized.
%
% Example
% [V, F] = torusMesh();
% F2 = triangulateFaces(F);
% P = [10 20 30];
% [D, PROJ] = distancePointMesh(P, V, F2);
% figure; drawMesh(V, F)
% view(3); axis equal; lighting gouraud; light;
% drawPoint3d(P);
% drawPoint3d(PROJ, 'm*');
% drawEdge3d([P PROJ], 'linewidth', 2, 'color', 'b');
%
% See also
% distancePointTriangle3d
%
% References
% * "Distance Between Point and Triangle in 3D", David Eberly
% https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
% * "Distance between a point and a triangle in 3d", by Gwendolyn Fischer
% https://mathworks.com/matlabcentral/fileexchange/22857
% * "Distance Between Point and Triangulated Surface", by Daniel Frisch
% https://www.mathworks.com/matlabcentral/fileexchange/52882
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2018-03-08, using Matlab 9.3.0.713579 (R2017b)
% Copyright 2018-2023 INRA - Cepia Software Platform
%% Parses input arguments
% check the case of mesh given as structure
if isstruct(vertices)
faces = vertices.faces;
vertices = vertices.vertices;
end
% default option
algo = 'auto';
% check optional arguments
while length(varargin) > 1
varName = varargin{1};
if ~ischar(varName)
error('Require options as parameter name-value pairs');
end
if strcmpi(varName, 'algorithm')
algo = varargin{2};
else
error(['Unknown option name: ' varName]);
end
varargin(1:2) = [];
end
% number of faces
nFaces = size(faces, 1);
if size(faces, 2) > 3 || iscell(faces)
faces = triangulateFaces(faces);
end
% If algorithm is chosen automatically, choose depending on face number
if strcmpi(algo, 'auto')
if size(faces, 1) > 30
algo = 'vectorized';
else
algo = 'sequential';
end
end
% switch to vectorized algorithm if necessary
if strcmpi(algo, 'vectorized')
if nargout > 1
[dist, proj] = distancePointTrimesh_vectorized(points, vertices, faces);
else
dist = distancePointTrimesh_vectorized(points, vertices, faces);
end
return;
end
%% Sequential algorithm
% For each point, iterates over the triangular faces
% allocate memory for result
nPoints = size(points, 1);
dist = zeros(nPoints, 1);
if nargout > 1
proj = zeros(nPoints, 3);
end
% iterate over points
for i = 1:nPoints
% % min distance and projection for current point
minDist = inf;
projp = [0 0 0];
% iterate over faces
for iFace = 1:nFaces
% create triange for current face
face = faces(iFace, :);
triangle = vertices(face, :);
[distf, projf] = distancePointTriangle3d(points(i,:), triangle);
if distf < minDist
minDist = distf;
projp = projf;
end
end
dist(i) = minDist;
if nargout > 1
proj(i,:) = projp;
end
end
end
function [dist, proj] = distancePointTrimesh_vectorized(point, vertices, faces)
%DISTANCEPOINTTRIMESH Vectorized version of the distancePointTrimesh function
%
% output = distancePointTrimesh_vectorized(input)
%
% This version is vectorized over faces: for each query point, the
% minimum distance to each triangular face is computed in parallel.
% Then the minimum distance over faces is kept.
%
% Example
% distancePointTrimesh
%
% ‒‒‒‒‒‒
% Author: David Legland
% e-mail: david.legland@inra.fr
% Created: 2018-03-08, using Matlab 9.3.0.713579 (R2017b)
% Copyright 2018 INRA - Cepia Software Platform
% Regions are not numbered as in the original paper of D. Eberly to allow
% automated computation of regions from the 3 conditions on lines.
% Region indices are computed as follow:
% IND = b2 * 2^2 + b1 * 2 + b0
% with:
% b0 = 1 if s < 0, 0 otherwise
% b1 = 1 if t < 0, 0 otherwise
% b2 = 1 if s+t > 1, 0 otherwise
% resulting in the following region indices:
% /\ t
% |
% \ R5 |
% \ |
% \ |
% \ |
% \| P3
% *
% |\
% | \
% R1 | \ R4
% | \
% | R0 \
% | \
% | P1 \ P2
% ––––––*–––––––*––––––> s
% | \
% R3 | R2 \ R6
% allocate memory for result
nPoints = size(point, 1);
dist = zeros(nPoints, 1);
proj = zeros(nPoints, 3);
% triangle origins and direction vectors
p1 = vertices(faces(:,1),:);
v12 = vertices(faces(:,2),:) - p1;
v13 = vertices(faces(:,3),:) - p1;
% identify coefficients of second order equation that do not depend on
% query point
a = dot(v12, v12, 2);
b = dot(v12, v13, 2);
c = dot(v13, v13, 2);
% iterate on query points
for i = 1:nPoints
% coefficients of second order equation that depend on query point
diffP = bsxfun(@minus, p1, point(i, :));
d = dot(v12, diffP, 2);
e = dot(v13, diffP, 2);
% compute position of projected point in the plane of the triangle
det = a .* c - b .* b;
s = b .* e - c .* d;
t = b .* d - a .* e;
% compute region index (one for each face)
regIndex = (s < 0) + 2 * (t < 0) + 4 * (s + t > det);
% for each region, process all faces whose projection fall within it
% region 0
% the minimum distance occurs inside the triangle
inds = regIndex == 0;
s(inds) = s(inds) ./ det(inds);
t(inds) = t(inds) ./ det(inds);
% region 1 (formerly region 3)
% The minimum distance must occur on the line s = 0
inds = find(regIndex == 1);
s(inds) = 0;
t(inds(e(inds) >= 0)) = 0;
inds2 = inds(e(inds) < 0);
bool3 = c(inds2) <= -e(inds2);
t(inds2(bool3)) = 1;
inds3 = inds2(~bool3);
t(inds3) = -e(inds3) ./ c(inds3);
% region 2 (formerly region 5)
% The minimum distance must occur on the line t = 0
inds = find(regIndex == 2);
t(inds) = 0;
s(inds(d(inds) >= 0)) = 0;
inds2 = inds(d(inds) < 0);
bool3 = a(inds2) <= -d(inds2);
s(inds2(bool3)) = 1;
inds3 = inds2(~bool3);
s(inds3) = -d(inds3) ./ a(inds3);
% region 3 (formerly region 4)
% The minimum distance must occur
% * on the line t = 0
% * on the line s = 0 with t >= 0
% * at the intersection of the two lines
inds = find(regIndex == 3);
inds2 = inds(d(inds) < 0);
% minimum on edge t = 0 with s > 0.
t(inds2) = 0;
bool3 = a(inds2) <= -d(inds2);
s(inds2(bool3)) = 1;
inds3 = inds2(~bool3);
s(inds3) = -d(inds3) ./ a(inds3);
inds2 = inds(d(inds) >= 0);
% minimum on edge s = 0
s(inds2) = 0;
bool3 = e(inds2) >= 0;
t(inds2(bool3)) = 0;
bool3 = e(inds2) < 0 & c(inds2) <= -e(inds2);
t(inds2(bool3)) = 1;
bool3 = e(inds2) < 0 & c(inds2) > -e(inds2);
inds3 = inds2(bool3);
t(inds3) = -e(inds3) ./ c(inds3);
% region 4 (formerly region 1)
% The minimum distance must occur on the line s + t = 1
inds = find(regIndex == 4);
numer = (c(inds) + e(inds)) - (b(inds) + d(inds));
s(inds(numer <= 0)) = 0;
inds2 = inds(numer > 0);
numer = numer(numer > 0);
denom = a(inds2) - 2 * b(inds2) + c(inds2);
s(inds2(numer > denom)) = 1;
bool3 = numer <= denom;
s(inds2(bool3)) = numer(bool3) ./ denom(bool3);
t(inds) = 1 - s(inds);
% Region 5 (formerly region 2)
% The minimum distance must occur:
% * on the line s + t = 1
% * on the line s = 0 with t <= 1
% * or at the intersection of the two (s=0; t=1)
inds = find(regIndex == 5);
tmp0 = b(inds) + d(inds);
tmp1 = c(inds) + e(inds);
% minimum on edge s+t = 1, with s > 0
bool2 = tmp1 > tmp0;
inds2 = inds(bool2);
numer = tmp1(bool2) - tmp0(bool2);
denom = a(inds2) - 2 * b(inds2) + c(inds2);
bool3 = numer < denom;
s(inds2(~bool3)) = 1;
inds3 = inds2(bool3);
s(inds3) = numer(bool3) ./ denom(bool3);
t(inds2) = 1 - s(inds2);
% minimum on edge s = 0, with t <= 1
inds2 = inds(~bool2);
s(inds2) = 0;
t(inds2(tmp1(~bool2) <= 0)) = 1;
t(inds2(tmp1(~bool2) > 0 & e(inds2) >= 0)) = 0;
inds3 = inds2(tmp1(~bool2) > 0 & e(inds2) < 0);
t(inds3) = -e(inds3) ./ c(inds3);
% region 6 (formerly region 6)
% The minimum distance must occur
% * on the line s + t = 1
% * on the line t = 0, with s <= 1
% * at the intersection of the two lines (s=1; t=0)
inds = find(regIndex == 6);
tmp0 = b(inds) + e(inds);
tmp1 = a(inds) + d(inds);
% minimum on edge s+t=1, with t > 0
bool2 = tmp1 > tmp0;
inds2 = inds(bool2);
numer = tmp1(bool2) - tmp0(bool2);
denom = a(inds2) - 2 * b(inds2) + c(inds2);
bool3 = numer <= denom;
t(inds2(~bool3)) = 1;
inds3 = inds2(bool3);
t(inds3) = numer(bool3) ./ denom(bool3);
s(inds2) = 1 - t(inds2);
% minimum on edge t = 0 with s <= 1
inds2 = inds(~bool2);
t(inds2) = 0;
s(inds2(tmp1(~bool2) <= 0)) = 1;
s(inds2(tmp1(~bool2) > 0 & d(inds2) >= 0)) = 0;
inds3 = inds2(tmp1(~bool2) > 0 & d(inds2) < 0);
s(inds3) = -d(inds3) ./ a(inds3);
% compute coordinates of closest point on plane
projList = p1 + bsxfun(@times, s, v12) + bsxfun(@times, t, v13);
% squared distance between point and closest point on plane
[dist(i), ind] = min(sum((bsxfun(@minus, point(i,:), projList)).^2, 2));
% keep the valid projection
proj(i, :) = projList(ind,:);
end
% convert squared distance to distance
dist = sqrt(dist);
end
|