1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = ellipsoidMesh(elli, varargin)
%ELLIPSOIDMESH Convert a 3D ellipsoid to face-vertex mesh representation.
%
% [V, F] = ellipsoidMesh(ELLI)
% ELLI is given by:
% [XC YC ZC A B C PHI THETA PSI],
% where (XC, YC, ZC) is the ellipsoid center, A, B and C are the half
% lengths of the ellipsoid main axes, and PHI THETA PSI are Euler angles
% representing ellipsoid orientation, in degrees.
%
% Example
% % compute mesh of an ellongated ellipsoid
% elli = [50 50 50 50 30 10 30 20 10];
% [v, f] = ellipsoidMesh(elli);
% figure; hold on; axis equal; axis([0 100 0 100 0 100]); view(3);
% drawMesh(v, f);
%
% See also
% meshes3d, drawEllipsoid, sphereMesh, equivalentEllipsoid
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2011-03-12, using Matlab 7.9.0.529 (R2009b)
% Copyright 2011-2023 INRA - Cepia Software Platform
%% Default values
% number of meridians
nPhi = 32;
% number of parallels
nTheta = 16;
%% Extract input arguments
% Parse the input (try to extract center coordinates and radius)
if nargin == 0
% no input: assumes ellipsoid with default shape
elli = [0 0 0 5 4 3 0 0 0];
end
% default set of options for drawing meshes
options = {'FaceColor', 'g', 'linestyle', 'none'};
while length(varargin) > 1
switch lower(varargin{1})
case 'nphi'
nPhi = varargin{2};
case 'ntheta'
nTheta = varargin{2};
otherwise
% assumes this is drawing option
options = [options varargin(1:2)]; %#ok<AGROW>
end
varargin(1:2) = [];
end
%% Parse numerical inputs
% Extract ellipsoid parameters
xc = elli(:,1);
yc = elli(:,2);
zc = elli(:,3);
a = elli(:,4);
b = elli(:,5);
c = elli(:,6);
k = pi / 180;
ellPhi = elli(:,7) * k;
ellTheta = elli(:,8) * k;
ellPsi = elli(:,9) * k;
%% Coordinates computation
% convert unit basis to ellipsoid basis
sca = createScaling3d(a, b, c);
rotZ = createRotationOz(ellPhi);
rotY = createRotationOy(ellTheta);
rotX = createRotationOx(ellPsi);
tra = createTranslation3d([xc yc zc]);
% concatenate transforms
trans = tra * rotZ * rotY * rotX * sca;
%% parametrisation of ellipsoid
% spherical coordinates
theta = linspace(0, pi, nTheta+1);
phi = linspace(0, 2*pi, nPhi+1);
% convert to cartesian coordinates
sintheta = sin(theta);
x = cos(phi') * sintheta;
y = sin(phi') * sintheta;
z = ones(length(phi),1) * cos(theta);
% transform mesh vertices
[x, y, z] = transformPoint3d(x, y, z, trans);
% convert to FV mesh
[vertices, faces] = surfToMesh(x, y, z, 'xPeriodic', false, 'yPeriodic', true);
% format output
varargout = formatMeshOutput(nargout, vertices, faces);
|