File: intersectPlaneMesh.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (279 lines) | stat: -rw-r--r-- 10,278 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function [polys, closedFlag] = intersectPlaneMesh(plane, v, f)
%INTERSECTPLANEMESH Compute the polylines resulting from plane-mesh intersection.
%
%   POLYS = intersectPlaneMesh(P, V, F)
%   [POLYS, CLOSED] = intersectPlaneMesh(P, V, F)
%   Computes the intersection between a plane and a mesh. 
%   The plane P is given as:
%   P = [X0 Y0 Z0  DX1 DY1 DZ1  DX2 DY2 DZ2]
%   The mesh is given as numeric array V of vertex coordinates and an array
%   of (triangular) face vertex indices.
%   The output POLYS is a cell array of polylines, where each cell contains
%   a NV-by-3 numeric array of coordinates. The (optional) output CLOSED is
%   a logical array the same size as the POLYS, indicating whether the
%   corresponding polylines are closed (true), or open (false). 
%   Use the functions 'drawPolygon3d' to display closed polylines, and
%   'drawPolyline3d' to display open polylines.
%
%
%   Example
%     % Intersect a cube by a plane
%     [v, f] = createCube; v = v * 10;
%     plane = createPlane([5 5 5], [3 4 5]);
%     % draw the primitives
%     figure; hold on; set(gcf, 'renderer', 'opengl');
%     axis([-10 20 -10 20 -10 20]); view(3);
%     drawMesh(v, f); drawPlane3d(plane);
%     % compute intersection polygon
%     polys = intersectPlaneMesh(plane, v, f);
%     drawPolygon3d(polys, 'LineWidth', 2);
%
%     % Intersect a torus by a set of planes, and draw the results
%     % first creates a torus slightly shifted and rotated
%     torus = [.5 .6 .7   30 10   3 4];
%     figure('color','w');
%     % convert to mesh representation
%     [v, f] = torusMesh(torus, 'nTheta', 64, 'nPhi', 64);
%     f = triangulateFaces(f);
%     drawMesh(v, f);
%     hold on; view (3); axis equal; light;
%     % compute intersections with collection of planes
%     xList = -50:5:50;
%     polySet = cell(length(xList), 1);
%     for i = 1:length(xList)
%         x0 = xList(i);
%         plane = createPlane([x0 .5 .5], [1 .2 .3]);
%         polySet{i} = intersectPlaneMesh(plane, v, f);
%     end
%     % draw the resulting 3D polygons
%     drawPolygon3d(polySet, 'lineWidth', 2, 'color', 'y')
%
%     % Demonstrate ability to draw open mesh intersections
%     poly = circleArcToPolyline([10 0 5 90 180], 33);
%     [x, y, z] = revolutionSurface(poly, linspace(-pi, pi, 65));
%     [v, f] = surfToMesh(x, y, z);
%     f = triangulateFaces(f);
%     plane = createPlane([0 0 0], [5 2 -4]);
%     figure; hold on; axis equal; view(3);
%     drawMesh(v, f, 'linestyle', 'none', 'facecolor', [0.0 0.8 0.0], 'faceAlpha', 0.7);
%     drawPlane3d(plane, 'facecolor', 'm', 'faceAlpha', 0.5);
%     % compute and display intersection
%     [curves, closed] = intersectPlaneMesh(plane, v, f);
%     drawPolyline3d(curves(~closed), 'linewidth', 2, 'color', 'b')
%
%
%   See also 
%     meshes3d, intersectPlanes, intersectEdgePlane
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2012-07-31, using Matlab 7.9.0.529 (R2009b)
% Copyright 2012-2023 INRA - Cepia Software Platform

e = [];
if isstruct(v)
    f = v.faces;
    if isfield(v, 'edges')
        e = v.edges;
    end
    v = v.vertices;
end


%% Computation of crossing edges

% compute the edge list
if isempty(e)
    e = meshEdges(f);
end
edges = [ v(e(:,1), :) v(e(:,2), :) ];

% identify which edges cross the mesh
inds = isBelowPlane(v, plane);
edgeCrossInds = find(sum(inds(e), 2) == 1);

% compute one intersection point for each edge
intersectionPoints = intersectEdgePlane(edges(edgeCrossInds, :), plane);



%% mapping edges <-> faces
% identify for each face the indices of edges that intersect the plane, as
% well as for each edge, the indices of the two faces around it.
% We expect each face to contain either 0 or 2 intersecting edges.
% 

nFaces = length(f);
faceEdges = cell(1, nFaces);
nCrossEdges = length(edgeCrossInds);
crossEdgeFaces = cell(nCrossEdges, 1);

for iEdge = 1:length(edgeCrossInds)
    % identify index of faces adjacent to edge
    edge = e(edgeCrossInds(iEdge), :);
    indFaces = find(sum(ismember(f, edge), 2) == 2);
    
    % assert mesh is manifold (no edge connected to more than three faces)
    if length(indFaces) > 2
        error('crossing edge %d (%d,%d) is associated to %d faces', ...
            iEdge, edge(1), edge(2), length(indFaces));
    end
    
    crossEdgeFaces{iEdge} = indFaces;
    
    % add current edge to list of edges associated to each face
    for iFace = 1:length(indFaces)
        indEdges = faceEdges{indFaces(iFace)};
        indEdges = [indEdges iEdge]; %#ok<AGROW>
        faceEdges{indFaces(iFace)} = indEdges;
    end
end

% initialize an array indicating which edges need to be processed
nCrossEdges = length(edgeCrossInds);
remainingCrossEdges = true(nCrossEdges, 1);


%% Iterate on edges and faces to form open poylines

% create empty cell array of open polylines
openPolys = {};

% identify crossing edges at extremity of open polylines
extremityEdgeInds = find(cellfun(@length, crossEdgeFaces) == 1);
remainingExtremities = true(length(extremityEdgeInds), 1);

% iterate while there are remaining extremity crossing edges
while any(remainingExtremities)
    % start from arbitrary remaining extremity
    extremityIndex = find(remainingExtremities, 1, 'first');
    remainingExtremities(extremityIndex) = false;

    % use extremity as current edge
    startEdgeIndex = extremityEdgeInds(extremityIndex);
    currentEdgeIndex = startEdgeIndex;
    
    % mark current edge as processed
    remainingCrossEdges(currentEdgeIndex) = false;
    
    % initialize new set of edge indices
    polyEdgeInds = currentEdgeIndex;

    % find the unique face adjacent to current edge
    edgeFaces = crossEdgeFaces{currentEdgeIndex};
    currentFace = edgeFaces(1);

    % iterate along current face-edge couples until back to first edge
    while true
        % find the index of next crossing edge
        inds = faceEdges{currentFace};
        currentEdgeIndex = inds(inds ~= currentEdgeIndex);
        
        % add index of current edge
        polyEdgeInds = [polyEdgeInds currentEdgeIndex]; %#ok<AGROW>

        % mark current edge as processed
        remainingCrossEdges(currentEdgeIndex) = false;
    
        % find the index of the other face containing current edge
        inds = crossEdgeFaces{currentEdgeIndex};

        % check if we found an extremity edge
        if length(inds) == 1
            ind = extremityEdgeInds == currentEdgeIndex;
            remainingExtremities(ind) = false;
            break;
        end

        % switch to next face
        currentFace = inds(inds ~= currentFace);
    end
    
    % create polygon, and add it to list of polygons
    poly = intersectionPoints(polyEdgeInds, :);
    openPolys = [openPolys, {poly}]; %#ok<AGROW>
end


%% Iterate on edges and faces to form closed polylines

% create empty cell array of polygons
rings = {};

% iterate while there are some crossing edges to process
while any(remainingCrossEdges)
    
    % start at any edge, mark it as current
    startEdgeIndex = find(remainingCrossEdges, 1, 'first');
    currentEdgeIndex = startEdgeIndex;
    
    % mark current edge as processed
    remainingCrossEdges(currentEdgeIndex) = false;
    
    % initialize new set of edge indices
    polyEdgeInds = currentEdgeIndex;

    % choose one of the two faces around the edge
    edgeFaces = crossEdgeFaces{currentEdgeIndex};
    currentFace = edgeFaces(1);

    % iterate along current face-edge couples until back to first edge
    while true
        % find the index of next crossing edge
        inds = faceEdges{currentFace};
        currentEdgeIndex = inds(inds ~= currentEdgeIndex);
     
        % mark current edge as processed
        remainingCrossEdges(currentEdgeIndex) = false;
    
        % check end of current loop
        if currentEdgeIndex == startEdgeIndex
            break;
        end
        
        % add index of current edge
        polyEdgeInds = [polyEdgeInds currentEdgeIndex]; %#ok<AGROW>

        % find the index of the other face containing current edge
        inds = crossEdgeFaces{currentEdgeIndex};
        currentFace = inds(inds ~= currentFace);
    end
    
    % create polygon, and add it to list of polygons
    poly = intersectionPoints(polyEdgeInds, :);
    rings = [rings, {poly}]; %#ok<AGROW>
end


%% Format output array
polys = [rings, openPolys];
closedFlag = [true(1, length(rings)), false(1, length(openPolys))];