File: meshCurvatures.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (299 lines) | stat: -rw-r--r-- 9,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function [C1, C2, U1, U2, H, K, N] = meshCurvatures(vertices, faces, varargin)
%MESHCURVATURES Compute principal curvatures on mesh vertices.
%
%   [C1, C2] = meshCurvatures(VERTICES, FACES)
%   Computes the principal curvatures C1 and C2 for each vertex of the mesh
%   defined by VERTICES and FACES.
%
%   [C1, C2] = meshCurvatures(..., PNAME, PVALUE)
%   Provides additional input arguments based on a list of name-value pairs
%   of arguments. Parameter names can be:
%   * 'SmoothingSteps'      (integer, default: 3) 
%       Specifies the number of steps for smoothing vertex curvature
%       tensors.  
%   * 'Verbose'             (boolean, default: true) 
%       Displays details about algorithm processing. 
%   * 'ShowProgress'        (boolean, default: true) 
%       Displays a text-based progress bar.
%
%   Algorithm
%   The function is adapted from the "compute_curvature" function, in the
%   "toolbox_graph" from Gabriel Peyre.
%   The basic idea is to define a curvature tensor for each edge, by
%   assigning a minimum curvature equal to zero along the edge, and a
%   maximum curvature equal to the dihedral angle across the edge.
%   Averaging around the neighbors of a vertex v yields a summation formula
%   over the neighbor edges to compute the curvature tensor of a vertex:
%           1
%   C(v) = ----     Sum       \beta(e) || e \cap A(v) || ebar ebar^t
%          A(v)  {e \in A(v)}
%   where:
%   * A(v) is the neighborhood region, usually defined as a 'ring' around
%       the vertex v
%   * beta(e) is the dihedral angle between the normals of the two faces
%       incident to edge e
%   * || e \cap A(v) || is the length of e (more exactly, the length of the
%       part of e contained within the neighborhood region
%   * ebar is the normalized edge
%
%   The curvature tensor is then decomposed into C = P D P^-1, with P
%   containing main direction vectors and normal, and D being a diagonal
%   matrix with the two main curvatures and zero along the diagonal.
%   
%   References
%   * David Cohen-Steiner and Jean-Marie Morvan (2003). 
%       "Restricted Delaunay triangulations and normal cycle". 
%       In Proc. 19th Annual ACM Symposium on Computational Geometry, 
%       pages 237-246. 
%   * Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Levy,
%       and Mathieu Desbrun (2003). "Anisotropic Polygonal Remeshing". 
%       ACM Transactions on Graphics. 
%       (SIGGRAPH '2003 Conference Proceedings)
%   * Mario Botsch, Leif Kobbelt, M. Pauly, P. Alliez, B. Levy (2010).
%       "Polygon Mesh Processing", Taylor and Francis Group, New York.
%   
%   Example
%     [v, f] = torusMesh;
%     f2 = triangulateFaces(f);
%     [c1, c2] = meshCurvatures(v, f2);
%     figure; hold on; axis equal; view(3);
%     drawMesh(v, f2, 'VertexColor', c1 .* c2);
%
%   See also 
%     meshes3d, drawMesh, triangulateFaces
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2021-09-21, using Matlab 9.10.0.1684407 (R2021a) Update 3
% Copyright 2021-2023 INRAE - BIA Research Unit - BIBS Platform (Nantes)

%% Process input arguments

% default values for options
nIters = 3;
verbose = true;
showProgress = true;

while length(varargin) > 1
    name = varargin{1};
    if strcmpi(name, 'SmoothingSteps')
        nIters = varargin{2};
    elseif strcmpi(name, 'Verbose')
        verbose = varargin{2};
    elseif strcmpi(name, 'ShowProgress')
        showProgress = varargin{2};
    else
        error('Unknown option: %s', name);
    end
    varargin(1:2) = [];
end

% validate vertices
if ~isnumeric(vertices) || size(vertices, 2) ~= 3
    error('Requires vertices to be a N-by-3 numeric array');
end

% ensure faces are triangular
if ~isnumeric(faces) || size(faces, 2) > 3
    warning('requires triangle mesh, forces triangulation');
    faces = triangulateFaces(faces);
end


%% Retrieve adjacency relationships

if verbose
    disp('compute adjacencies');
end

% number of elements of each type
nv = size(vertices, 1);
nf = size(faces, 1);

% ev1 and ev2 are indices of source and target vertex of each edge
% (recomputed later)
ev1 = [faces(:,1); faces(:,2); faces(:,3)];
ev2 = [faces(:,2); faces(:,3); faces(:,1)];

% Compute sparse matrix representing edge-to-face adjacency
s = [1:nf 1:nf 1:nf]';
A = sparse(ev1, ev2, s, nv, nv); 

% converts sparse matrix to indices of adjacent vertices and faces
[~, ~, ef1] = find(A);         % index of 'right' face
[ev1, ev2, ef2] = find(A');    % index of 'left' face, and of vertices

% edges are consdered twice (one for each vertex)
% keep only the edge with lower source index
inds = find(ev1 < ev2);
ef1 = ef1(inds);
ef2 = ef2(inds);
ev1 = ev1(inds); 
ev2 = ev2(inds);

% number of edges
ne = length(ev1);


%% Compute geometry features

% compute edge direction vectors
edgeVectors = vertices(ev2,:) - vertices(ev1,:);

% normalize edge direction vecotrs
d = sqrt(sum(edgeVectors.^2, 2));
edgeVectors = bsxfun(@rdivide, edgeVectors, d);

% avoid too large numerics
d = d ./ mean(d);

% normals to faces
normals = meshFaceNormals(vertices, faces);

% ensure normals point outward the mesh
if meshVolume(vertices, faces) < 0
    normals = -normals;
end

% inner product of normals
dp = sum(normals(ef1, :) .* normals(ef2, :), 2);

% compute the (unsigned) dihedral angle between the normals of the two
% faces incident to each edge
beta = acos(min(max(dp, -1), 1));

% relatice orientation of face normals cross product and edge orientation
cp = crossProduct3d(normals(ef1, :), normals(ef2, :));
si = sign(sum(cp .* edgeVectors, 2));

% compute signed dihedral angle
beta = beta .* si;


%% Compute tensors

if verbose
    disp('compute edge tensors');
end

% curvature tensor of each edge
T = zeros(3, 3, ne);
for i = 1:3
    for j = 1:i
        T(i, j, :) = reshape(edgeVectors(:,i) .* edgeVectors(:,j), 1, 1, ne);
        T(j, i, :) = T(i, j, :);
    end
end
T = bsxfun(@times, T, reshape(d .* beta, [1 1 ne]));

% curvature tensor of each vertex by pooling edge tensors
Tv = zeros(3, 3, nv);
w = zeros(1, 1, nv);
for k = 1:ne
    if showProgress
        progressbar(k, ne);
    end
    Tv(:,:,ev1(k)) = Tv(:,:,ev1(k)) + T(:,:,k);
    Tv(:,:,ev2(k)) = Tv(:,:,ev2(k)) + T(:,:,k);
    w(:,:,ev1(k)) = w(:,:,ev1(k)) + 1;
    w(:,:,ev2(k)) = w(:,:,ev2(k)) + 1;
end
w(w < eps) = 1;
Tv = Tv ./ repmat(w, [3 3 1]);

if verbose
    disp('average vertex tensors');
end

% apply smoothing on the tensor field
for i = 1:3
    for j = 1:3
        a = Tv(i, j, :);
        a = smoothMeshFunction(vertices, faces, a(:), nIters);
        Tv(i, j, :) = reshape(a, [1 1 nv]);
    end
end


%% Retrieve curvatures and eigen vectors from tensors

if verbose
    disp('retrieve curvatures');
end

% allocate memory
U = zeros(3, 3, nv);
D = zeros(3, nv);

% iterate over vertices
for k = 1:nv
    % display progress
    if showProgress
        progressbar(k,nv);
    end
    
    % extract eigenvectors and eigenvalues for current vertex
    [u, d] = eig(Tv(:,:,k));
    d = real(diag(d));
    
    % sort acording to [normal, min curv, max curv]
    [~, I] = sort(abs(d));    
    D(:, k) = d(I);
    U(:, :, k) = real(u(:,I));
end

% retrieve main curvatures and associated directions
C1 = D(2,:)';
C2 = D(3,:)';
U1 = squeeze(U(:,3,:))';
U2 = squeeze(U(:,2,:))';

% enforce C1 < C2
inds = find(C1 > C2);
C1tmp = C1; 
U1tmp = U1;
C1(inds) = C2(inds); 
C2(inds) = C1tmp(inds);
U1(inds,:) = U2(inds,:); 
U2(inds,:) = U1tmp(inds,:);

% compute optional output arguments
if nargout > 4
    % average and gaussian curvatures
    H = (C1 + C2) / 2;
    K = C1 .* C2;
    
    if nargout > 6
        % normal vector for each vertex
        N = squeeze(U(:,1,:))';
    end
end