1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [C1, C2, U1, U2, H, K, N] = meshCurvatures(vertices, faces, varargin)
%MESHCURVATURES Compute principal curvatures on mesh vertices.
%
% [C1, C2] = meshCurvatures(VERTICES, FACES)
% Computes the principal curvatures C1 and C2 for each vertex of the mesh
% defined by VERTICES and FACES.
%
% [C1, C2] = meshCurvatures(..., PNAME, PVALUE)
% Provides additional input arguments based on a list of name-value pairs
% of arguments. Parameter names can be:
% * 'SmoothingSteps' (integer, default: 3)
% Specifies the number of steps for smoothing vertex curvature
% tensors.
% * 'Verbose' (boolean, default: true)
% Displays details about algorithm processing.
% * 'ShowProgress' (boolean, default: true)
% Displays a text-based progress bar.
%
% Algorithm
% The function is adapted from the "compute_curvature" function, in the
% "toolbox_graph" from Gabriel Peyre.
% The basic idea is to define a curvature tensor for each edge, by
% assigning a minimum curvature equal to zero along the edge, and a
% maximum curvature equal to the dihedral angle across the edge.
% Averaging around the neighbors of a vertex v yields a summation formula
% over the neighbor edges to compute the curvature tensor of a vertex:
% 1
% C(v) = ---- Sum \beta(e) || e \cap A(v) || ebar ebar^t
% A(v) {e \in A(v)}
% where:
% * A(v) is the neighborhood region, usually defined as a 'ring' around
% the vertex v
% * beta(e) is the dihedral angle between the normals of the two faces
% incident to edge e
% * || e \cap A(v) || is the length of e (more exactly, the length of the
% part of e contained within the neighborhood region
% * ebar is the normalized edge
%
% The curvature tensor is then decomposed into C = P D P^-1, with P
% containing main direction vectors and normal, and D being a diagonal
% matrix with the two main curvatures and zero along the diagonal.
%
% References
% * David Cohen-Steiner and Jean-Marie Morvan (2003).
% "Restricted Delaunay triangulations and normal cycle".
% In Proc. 19th Annual ACM Symposium on Computational Geometry,
% pages 237-246.
% * Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Levy,
% and Mathieu Desbrun (2003). "Anisotropic Polygonal Remeshing".
% ACM Transactions on Graphics.
% (SIGGRAPH '2003 Conference Proceedings)
% * Mario Botsch, Leif Kobbelt, M. Pauly, P. Alliez, B. Levy (2010).
% "Polygon Mesh Processing", Taylor and Francis Group, New York.
%
% Example
% [v, f] = torusMesh;
% f2 = triangulateFaces(f);
% [c1, c2] = meshCurvatures(v, f2);
% figure; hold on; axis equal; view(3);
% drawMesh(v, f2, 'VertexColor', c1 .* c2);
%
% See also
% meshes3d, drawMesh, triangulateFaces
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2021-09-21, using Matlab 9.10.0.1684407 (R2021a) Update 3
% Copyright 2021-2023 INRAE - BIA Research Unit - BIBS Platform (Nantes)
%% Process input arguments
% default values for options
nIters = 3;
verbose = true;
showProgress = true;
while length(varargin) > 1
name = varargin{1};
if strcmpi(name, 'SmoothingSteps')
nIters = varargin{2};
elseif strcmpi(name, 'Verbose')
verbose = varargin{2};
elseif strcmpi(name, 'ShowProgress')
showProgress = varargin{2};
else
error('Unknown option: %s', name);
end
varargin(1:2) = [];
end
% validate vertices
if ~isnumeric(vertices) || size(vertices, 2) ~= 3
error('Requires vertices to be a N-by-3 numeric array');
end
% ensure faces are triangular
if ~isnumeric(faces) || size(faces, 2) > 3
warning('requires triangle mesh, forces triangulation');
faces = triangulateFaces(faces);
end
%% Retrieve adjacency relationships
if verbose
disp('compute adjacencies');
end
% number of elements of each type
nv = size(vertices, 1);
nf = size(faces, 1);
% ev1 and ev2 are indices of source and target vertex of each edge
% (recomputed later)
ev1 = [faces(:,1); faces(:,2); faces(:,3)];
ev2 = [faces(:,2); faces(:,3); faces(:,1)];
% Compute sparse matrix representing edge-to-face adjacency
s = [1:nf 1:nf 1:nf]';
A = sparse(ev1, ev2, s, nv, nv);
% converts sparse matrix to indices of adjacent vertices and faces
[~, ~, ef1] = find(A); % index of 'right' face
[ev1, ev2, ef2] = find(A'); % index of 'left' face, and of vertices
% edges are consdered twice (one for each vertex)
% keep only the edge with lower source index
inds = find(ev1 < ev2);
ef1 = ef1(inds);
ef2 = ef2(inds);
ev1 = ev1(inds);
ev2 = ev2(inds);
% number of edges
ne = length(ev1);
%% Compute geometry features
% compute edge direction vectors
edgeVectors = vertices(ev2,:) - vertices(ev1,:);
% normalize edge direction vecotrs
d = sqrt(sum(edgeVectors.^2, 2));
edgeVectors = bsxfun(@rdivide, edgeVectors, d);
% avoid too large numerics
d = d ./ mean(d);
% normals to faces
normals = meshFaceNormals(vertices, faces);
% ensure normals point outward the mesh
if meshVolume(vertices, faces) < 0
normals = -normals;
end
% inner product of normals
dp = sum(normals(ef1, :) .* normals(ef2, :), 2);
% compute the (unsigned) dihedral angle between the normals of the two
% faces incident to each edge
beta = acos(min(max(dp, -1), 1));
% relatice orientation of face normals cross product and edge orientation
cp = crossProduct3d(normals(ef1, :), normals(ef2, :));
si = sign(sum(cp .* edgeVectors, 2));
% compute signed dihedral angle
beta = beta .* si;
%% Compute tensors
if verbose
disp('compute edge tensors');
end
% curvature tensor of each edge
T = zeros(3, 3, ne);
for i = 1:3
for j = 1:i
T(i, j, :) = reshape(edgeVectors(:,i) .* edgeVectors(:,j), 1, 1, ne);
T(j, i, :) = T(i, j, :);
end
end
T = bsxfun(@times, T, reshape(d .* beta, [1 1 ne]));
% curvature tensor of each vertex by pooling edge tensors
Tv = zeros(3, 3, nv);
w = zeros(1, 1, nv);
for k = 1:ne
if showProgress
progressbar(k, ne);
end
Tv(:,:,ev1(k)) = Tv(:,:,ev1(k)) + T(:,:,k);
Tv(:,:,ev2(k)) = Tv(:,:,ev2(k)) + T(:,:,k);
w(:,:,ev1(k)) = w(:,:,ev1(k)) + 1;
w(:,:,ev2(k)) = w(:,:,ev2(k)) + 1;
end
w(w < eps) = 1;
Tv = Tv ./ repmat(w, [3 3 1]);
if verbose
disp('average vertex tensors');
end
% apply smoothing on the tensor field
for i = 1:3
for j = 1:3
a = Tv(i, j, :);
a = smoothMeshFunction(vertices, faces, a(:), nIters);
Tv(i, j, :) = reshape(a, [1 1 nv]);
end
end
%% Retrieve curvatures and eigen vectors from tensors
if verbose
disp('retrieve curvatures');
end
% allocate memory
U = zeros(3, 3, nv);
D = zeros(3, nv);
% iterate over vertices
for k = 1:nv
% display progress
if showProgress
progressbar(k,nv);
end
% extract eigenvectors and eigenvalues for current vertex
[u, d] = eig(Tv(:,:,k));
d = real(diag(d));
% sort acording to [normal, min curv, max curv]
[~, I] = sort(abs(d));
D(:, k) = d(I);
U(:, :, k) = real(u(:,I));
end
% retrieve main curvatures and associated directions
C1 = D(2,:)';
C2 = D(3,:)';
U1 = squeeze(U(:,3,:))';
U2 = squeeze(U(:,2,:))';
% enforce C1 < C2
inds = find(C1 > C2);
C1tmp = C1;
U1tmp = U1;
C1(inds) = C2(inds);
C2(inds) = C1tmp(inds);
U1(inds,:) = U2(inds,:);
U2(inds,:) = U1tmp(inds,:);
% compute optional output arguments
if nargout > 4
% average and gaussian curvatures
H = (C1 + C2) / 2;
K = C1 .* C2;
if nargout > 6
% normal vector for each vertex
N = squeeze(U(:,1,:))';
end
end
|