1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = meshVertexClustering(vertices, faces, spacing, varargin)
%MESHVERTEXCLUSTERING Simplifies a mesh using vertex clustering.
%
% [V2, F2] = meshVertexClustering(V, F, SPACING)
% [V2, F2] = meshVertexClustering(MESH, SPACING)
% MESH2 = meshVertexClustering(...)
%
% Simplifies a mesh using vertex clustering. Input mesh is specified
% either by a pair V, F containing the vertex coordinates and the faces
% informations, or by a structure with fields 'vertices' and 'faces'.
%
% The SPACING input defines the size of the grid. It can be either a
% scalar (uniform grid) or a 1-by-3 row vector.
%
% The output is specified either in two outputs, or in a structure with
% fields 'vertices' and 'faces'.
%
% Example
% [x, y, z] = meshgrid(1:100, 1:100, 1:100);
% img = hypot3(x-51.12, y-52.23, z-53.34);
% [faces, vertices] = isosurface(img, 45);
% [v2, f2] = meshVertexClustering(vertices, faces, 10);
% figure; axis equal; axis([0 100 0 100 0 100]);
% drawMesh(v2, f2);
%
% See also
% reducepatch, smoothMesh
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2019-01-28, using Matlab 9.5.0.944444 (R2018b)
% Copyright 2019-2023 INRA - Cepia Software Platform
%% Initialisation
if isstruct(vertices)
if nargin > 2
varargin = [{spacing} varargin(:)];
end
spacing = faces;
mesh = vertices;
vertices = mesh.vertices;
faces = mesh.faces;
end
% ensure input mesh is a triangulation
faces = triangulateFaces(faces);
% ensure spacing is a 1-by-3 array
if isscalar(spacing)
spacing = [spacing spacing spacing];
end
% extract grid origin
origin = [0 0 0];
if ~isempty(varargin)
origin = varargin{1};
end
%% Apply grid simplification
% identify the vertices belonging to the same grid
[v2, I, J] = unique(round(bsxfun(@rdivide, bsxfun(@minus, vertices, origin), spacing)), 'rows');
%% compute reduced vertex coordinates
% compute coordinates of new vertices
for iVertex = 1:length(I)
gridVertices = vertices(J == iVertex, :);
v2(iVertex, :) = mean(gridVertices, 1);
end
%% Compute new faces
% create empty array
faces2 = zeros(0, 3);
% iterate over old faces, and keep only faces whose vertices belong to
% different cell grids
nFaces = size(faces, 1);
for iFace = 1:nFaces
% current face
face = faces(iFace, :);
% equivalent face with new vertices
face2 = J(face)';
% some vertices may belong to same cell, so we need to adjust
% processing
nInds = length(unique(face2));
if nInds == 3
% vertices belong to three different cells -> create a new face
% keep smaller vertex at first position
[tmp, indMin] = min(face2); %#ok<ASGLU>
face2 = circshift(face2, [1-indMin 0]);
% append the new face to the array
faces2 = [faces2 ; face2]; %#ok<AGROW>
end
end
% remove duplicate faces
faces2 = unique(faces2, 'rows');
if nargout == 1
varargout{1} = struct('vertices', v2, 'faces', faces2);
else
varargout = {v2, faces2};
end
|