File: triangulatePolygonPair.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (155 lines) | stat: -rw-r--r-- 5,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function [vertices, faces] = triangulatePolygonPair(poly1, poly2, varargin)
%TRIANGULATEPOLYGONPAIR Compute triangulation between a pair of 3D closed curves.
%
%   [V, F] = triangulatePolygonPair(POLY1, POLY2)
%
%   [V, F] = triangulatePolygonPair(..., 'recenter', FLAG)
%   Where FLAG is a boolean, specifies whether the second curve should be
%   translated to have the same centroid as the first curve. This can
%   improve mathcing of vertices. Default is true.
%
%
%   Example
%     % triangulate a surface patch between two ellipses
%     % create two sample curves
%     poly1 = ellipseToPolygon([50 50 40 20 0], 36);
%     poly2 = ellipseToPolygon([50 50 40 20 60], 36);
%     poly1 = poly1(1:end-1,:);
%     poly2 = poly2(1:end-1,:);
%     % transform to 3D polygons / curves
%     curve1 = [poly1 10*ones(size(poly1, 1), 1)];
%     curve2 = [poly2 20*ones(size(poly2, 1), 1)];
%     % draw as 3D curves
%     figure(1); clf; hold on;
%     drawPolygon3d(curve1, 'b'); drawPoint3d(curve1, 'bo');
%     drawPolygon3d(curve2, 'g'); drawPoint3d(curve2, 'go');
%     view(3); axis equal;
%     [vertices, faces] = triangulatePolygonPair(curve1, curve2);
%     % display the resulting mesh
%     figure(2); clf; hold on;
%     drawMesh(vertices, faces);
%     drawPolygon3d(curve1, 'color', 'b', 'linewidth', 2);
%     drawPolygon3d(curve2, 'color', 'g', 'linewidth', 2);
%     view(3); axis equal;
%
%   See also 
%     meshes3D, triangulatePolygonPair3d, triangulateCurvePair,
%     meshSurfaceArea 
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2017-05-18, using Matlab 9.1.0.441655 (R2016b)
% Copyright 2017-2023 INRA - Cepia Software Platform

%% Settings

recenterFlag = true;
while length(varargin) > 1
    pname = varargin{1};
    if strcmpi(pname, 'recenter')
        recenterFlag = varargin{2};
    else
        error('Unknown parameter name: %s', pname);
    end
    varargin(1:2) = [];
end


%% Memory allocation

% concatenate vertex coordinates for creating mesh
vertices = [poly1 ; poly2];

% number of vertices on each polygon
n1 = size(poly1, 1);
n2 = size(poly2, 1);

% allocate the array of facets (each edge of each polygon provides a facet)
nFaces = n1 + n2;
faces = zeros(nFaces, 3);


% Translate the second polygon such that the centroids of the bounding
% boxes coincide. This is expected to improve the matching of the two
% curves.
if recenterFlag
    box1 = boundingBox3d(poly1);
    box2 = boundingBox3d(poly2);
    center1 = (box1(2:2:end) + box1(1:2:end-1)) / 2;
    center2 = (box2(2:2:end) + box2(1:2:end-1)) / 2;
    vecTrans = center1 - center2;
    trans = createTranslation3d(vecTrans);
    poly2 = transformPoint3d(poly2, trans);
end


%% Init iteration

% find the pair of points with smallest distance.
% This will be the current diagonal.
[dists, inds] = minDistancePoints(poly1, poly2);
[dummy, ind1] = min(dists); %#ok<ASGLU>
ind2 = inds(ind1);

% consider two consecutive vertices on each polygon
currentIndex1 = ind1;
currentIndex2 = ind2;


%% Main iteration
% For each diagonal, consider the two possible facets (one for each 'next'
% vertex on each polygon), each create current facet according to the
% closest one. 
% Then update current diagonal for next iteration.

for iFace = 1:nFaces
    nextIndex1 = mod(currentIndex1, n1) + 1;
    nextIndex2 = mod(currentIndex2, n2) + 1;
    
    % compute lengths of diagonals
    dist1 = distancePoints(poly1(currentIndex1, :), poly2(nextIndex2,:));
    dist2 = distancePoints(poly1(nextIndex1, :), poly2(currentIndex2,:));
    
    if dist1 < dist2
        % keep current vertex of curve1, use next vertex on curve2
        face = [currentIndex1 currentIndex2+n1 nextIndex2+n1];
        currentIndex2 = nextIndex2;
    else
        % keep current vertex of curve2, use next vertex on curve1
        face = [currentIndex1 currentIndex2+n1 nextIndex1];
        currentIndex1 = nextIndex1;
    end
    
    % create the facet
    faces(iFace, :) = face;
end