1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [vertices, faces] = triangulatePolygonPair(poly1, poly2, varargin)
%TRIANGULATEPOLYGONPAIR Compute triangulation between a pair of 3D closed curves.
%
% [V, F] = triangulatePolygonPair(POLY1, POLY2)
%
% [V, F] = triangulatePolygonPair(..., 'recenter', FLAG)
% Where FLAG is a boolean, specifies whether the second curve should be
% translated to have the same centroid as the first curve. This can
% improve mathcing of vertices. Default is true.
%
%
% Example
% % triangulate a surface patch between two ellipses
% % create two sample curves
% poly1 = ellipseToPolygon([50 50 40 20 0], 36);
% poly2 = ellipseToPolygon([50 50 40 20 60], 36);
% poly1 = poly1(1:end-1,:);
% poly2 = poly2(1:end-1,:);
% % transform to 3D polygons / curves
% curve1 = [poly1 10*ones(size(poly1, 1), 1)];
% curve2 = [poly2 20*ones(size(poly2, 1), 1)];
% % draw as 3D curves
% figure(1); clf; hold on;
% drawPolygon3d(curve1, 'b'); drawPoint3d(curve1, 'bo');
% drawPolygon3d(curve2, 'g'); drawPoint3d(curve2, 'go');
% view(3); axis equal;
% [vertices, faces] = triangulatePolygonPair(curve1, curve2);
% % display the resulting mesh
% figure(2); clf; hold on;
% drawMesh(vertices, faces);
% drawPolygon3d(curve1, 'color', 'b', 'linewidth', 2);
% drawPolygon3d(curve2, 'color', 'g', 'linewidth', 2);
% view(3); axis equal;
%
% See also
% meshes3D, triangulatePolygonPair3d, triangulateCurvePair,
% meshSurfaceArea
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2017-05-18, using Matlab 9.1.0.441655 (R2016b)
% Copyright 2017-2023 INRA - Cepia Software Platform
%% Settings
recenterFlag = true;
while length(varargin) > 1
pname = varargin{1};
if strcmpi(pname, 'recenter')
recenterFlag = varargin{2};
else
error('Unknown parameter name: %s', pname);
end
varargin(1:2) = [];
end
%% Memory allocation
% concatenate vertex coordinates for creating mesh
vertices = [poly1 ; poly2];
% number of vertices on each polygon
n1 = size(poly1, 1);
n2 = size(poly2, 1);
% allocate the array of facets (each edge of each polygon provides a facet)
nFaces = n1 + n2;
faces = zeros(nFaces, 3);
% Translate the second polygon such that the centroids of the bounding
% boxes coincide. This is expected to improve the matching of the two
% curves.
if recenterFlag
box1 = boundingBox3d(poly1);
box2 = boundingBox3d(poly2);
center1 = (box1(2:2:end) + box1(1:2:end-1)) / 2;
center2 = (box2(2:2:end) + box2(1:2:end-1)) / 2;
vecTrans = center1 - center2;
trans = createTranslation3d(vecTrans);
poly2 = transformPoint3d(poly2, trans);
end
%% Init iteration
% find the pair of points with smallest distance.
% This will be the current diagonal.
[dists, inds] = minDistancePoints(poly1, poly2);
[dummy, ind1] = min(dists); %#ok<ASGLU>
ind2 = inds(ind1);
% consider two consecutive vertices on each polygon
currentIndex1 = ind1;
currentIndex2 = ind2;
%% Main iteration
% For each diagonal, consider the two possible facets (one for each 'next'
% vertex on each polygon), each create current facet according to the
% closest one.
% Then update current diagonal for next iteration.
for iFace = 1:nFaces
nextIndex1 = mod(currentIndex1, n1) + 1;
nextIndex2 = mod(currentIndex2, n2) + 1;
% compute lengths of diagonals
dist1 = distancePoints(poly1(currentIndex1, :), poly2(nextIndex2,:));
dist2 = distancePoints(poly1(nextIndex1, :), poly2(currentIndex2,:));
if dist1 < dist2
% keep current vertex of curve1, use next vertex on curve2
face = [currentIndex1 currentIndex2+n1 nextIndex2+n1];
currentIndex2 = nextIndex2;
else
% keep current vertex of curve2, use next vertex on curve1
face = [currentIndex1 currentIndex2+n1 nextIndex1];
currentIndex1 = nextIndex1;
end
% create the facet
faces(iFace, :) = face;
end
|