File: trimeshMeanBreadth.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (118 lines) | stat: -rw-r--r-- 4,190 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function mb = trimeshMeanBreadth(vertices, faces)
%TRIMESHMEANBREADTH Mean breadth of a triangular mesh.
%
%   MB = trimeshMeanBreadth(VERTICES, FACES)
%   Computes the mean breadth (proporitonal to the integral of mean
%   curvature) of a triangular mesh.
%
%   Example
%     [V, F] = createCube;
%     F2 = triangulateFaces(F);
%     MB = trimeshMeanBreadth(V, F2)
%     MB = 
%         1.5000
%
%   See also 
%   meshes3d, trimeshSurfaceArea, trimeshEdgeFaces, polyhedronMeanBreadth
%
%   References
%   Stoyan D., Kendall W.S., Mecke J. (1995) "Stochastic Geometry and its
%       Applications", John Wiley and Sons, p. 26
%   Ohser, J., Muescklich, F. (2000) "Statistical Analysis of
%       Microstructures in Materials Sciences", John Wiley and Sons, p.352

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2015-08-19, using Matlab 8.5.0.197613 (R2015a)
% Copyright 2015-2023 INRA - Cepia Software Platform

%% Check input validity

if size(faces, 2) ~= 3
    error('meshes3d:trimeshMeanBreadth:NonTriangularMesh', ...
        'Requires a triangular mesh as input');
end
    
%% Compute edge and edgeFaces arrays
% Uses the same code as in trimeshEdgeFaces

% compute vertex indices of each edge (in increasing index order)
edges = sort([faces(:,[1 2]) ; faces(:,[2 3]) ; faces(:,[3 1])], 2);

% create an array to keep indices of faces "creating" each edge
nFaces = size(faces, 1);
edgeFaceInds = repmat( (1:nFaces)', 3, 1);

% sort edges, keeping indices
[edges, ia, ib] = unique(edges, 'rows'); %#ok<ASGLU>
nEdges = size(edges, 1);

% allocate memory for result
edgeFaces = zeros(nEdges, 2);

% iterate over edges, to identify incident faces
for iEdge = 1:nEdges
    inds = find(ib == iEdge);
    edgeFaces(iEdge, 1:length(inds)) = edgeFaceInds(inds);
end


%% Compute dihedral angle for each edge

% compute normal of each face
normals = meshFaceNormals(vertices, faces);

% allocate memory for resulting angles
alpha = zeros(nEdges, 1);

% iterate over edges
for iEdge = 1:nEdges
    % indices of adjacent faces
    indFace1 = edgeFaces(iEdge, 1);
    indFace2 = edgeFaces(iEdge, 2);
    
    % normal vector of adjacent faces
    normal1 = normals(indFace1, :);
    normal2 = normals(indFace2, :);
    
    % compute dihedral angle of two vectors
    alpha(iEdge) = vectorAngle3d(normal1, normal2);
end


%% Compute mean breadth
% integrate the dihedral angles weighted by the length of each edge

% compute length of each edge
lengths = meshEdgeLength(vertices, edges);

% compute product of length by angles 
mb = sum(alpha .* lengths) / (4*pi);