1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function kappa = curvature(varargin)
%CURVATURE Estimate curvature of a polyline defined by points.
%
% KAPPA = curvature(T, PX, PY, METHOD, DEGREE)
% First compute an approximation of the curve given by PX and PY, with
% the parametrization T. METHOD used for approximation can be only:
% 'polynom', with specified degree
% Further methods will be provided in a future version.
% T, PX, and PY are N*1 array of the same length.
% Then compute the curvature of approximated curve for each point.
%
% For example:
% KAPPA = curvature(t, px, py, 'polynom', 6)
%
% KAPPA = curvature(T, POINTS, METHOD, DEGREE)
% specify curve as a suite of points. POINTS is size [N*2].
%
% KAPPA = curvature(PX, PY, METHOD, DEGREE)
% KAPPA = curvature(POINTS, METHOD, DEGREE)
% compute implicite normalization of the curve, based on euclidian
% distance between 2 consecutive points, and normalized between 0 and 1.
%
%
% See also
% polygons2d, parametrize
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2003-04-07
% Copyright 2003-2023 INRA - TPV URPOI - BIA IMASTE
% default values
degree = 5;
t=0; % parametrization of curve
tc=0; % indices of points wished for curvature
% Extract method and degree
nargin = length(varargin);
varN = varargin{nargin};
varN2 = varargin{nargin-1};
if ischar(varN2)
% method and degree are specified
method = varN2;
degree = varN;
varargin = varargin(1:nargin-2);
elseif ischar(varN)
% only method is specified, use degree 6 as default
method = varN;
varargin = varargin{1:nargin-1};
else
% method and degree are implicit : use 'polynom' and 6
method = 'polynom';
end
% extract input parametrization and curve
nargin = length(varargin);
if nargin==1
% parameters are just the points -> compute caracterization.
var = varargin{1};
px = var(:,1);
py = var(:,2);
elseif nargin==2
var = varargin{2};
if size(var, 2)==2
% parameters are t and POINTS
px = var(:,1);
py = var(:,2);
t = varargin{1};
else
% parameters are px and py
px = varargin{1};
py = var;
end
elseif nargin==3
var = varargin{2};
if size(var, 2)==2
% parameters are t, POINTS, and tc
px = var(:,1);
py = var(:,2);
t = varargin{1};
else
% parameters are t, px and py
t = varargin{1};
px = var;
py = varargin{3};
end
elseif nargin==4
% parameters are t, px, py and tc
t = varargin{1};
px = varargin{2};
py = varargin{3};
tc = varargin{4};
end
% compute implicit parameters
% if t and/or tc are not computed, use implicit definition
if t==0
t = parametrize(px, py);
t = t/t(length(t)); % normalize between 0 and 1
end
% if tc not defined, compute curvature for all points
if tc==0
tc = t;
else
% else convert from indices to parametrization values
tc = t(tc);
end
%% compute curvature for each point of the curve
if strcmp(method, 'polynom')
% compute coefficients of interpolation functions
x0 = polyfit(t, px, degree);
y0 = polyfit(t, py, degree);
% compute coefficients of first and second derivatives. In the case of a
% polynom, it is possible to compute coefficient of derivative by
% multiplying with a matrix.
derive = diag(degree:-1:0);
xp = circshift(x0*derive, [0 1]);
yp = circshift(y0*derive, [0 1]);
xs = circshift(xp*derive, [0 1]);
ys = circshift(yp*derive, [0 1]);
% compute values of first and second derivatives for needed points
xprime = polyval(xp, tc);
yprime = polyval(yp, tc);
xsec = polyval(xs, tc);
ysec = polyval(ys, tc);
% compute value of curvature
kappa = (xprime.*ysec - xsec.*yprime)./ ...
power(xprime.*xprime + yprime.*yprime, 3/2);
else
error('unknown method');
end
|