1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [points, edgeInds, linePositions] = intersectLinePolygon(line, poly, varargin)
%INTERSECTLINEPOLYGON Intersection points between a line and a polygon.
%
% P = intersectLinePolygon(LINE, POLY)
% Returns the intersection points of the lines LINE with polygon POLY.
% LINE is a 1-by-4 row vector containing parametric representation of the
% line (in the format [x0 y0 dx dy], see the function 'createLine' for
% details).
% POLY is a NV-by-2 array containing coordinates of the polygon vertices
% P is a K-by-2 array containing the coordinates of the K intersection
% points.
%
% P = intersectLinePolygon(LINE, POLY, TOL)
% Specifies the tolerance for geometric tests. Default is 1e-14.
%
% [P, INDS] = intersectLinePolygon(...)
% Also returns the indices of edges involved in intersections. INDS is a
% K-by-1 column vector, such that P(i,:) corresponds to intersection of
% the line with the i-th edge of the polygon. If the intersection occurs
% at a polygon vertex, the index of only one of the two neighbor edges is
% returned.
% Note that due to numerical approximations, the use of function
% 'isPointOnEdge' may give results not consistent with this function.
%
% [P, INDS, POS] = intersectLinePolygon(...)
% Also returns the relative position of each intersection point along the
% line. The position can be used to sort the points.
%
% Examples
% % compute intersections between a square and an horizontal line
% poly = [0 0;10 0;10 10;0 10];
% line = [5 5 1 0];
% intersectLinePolygon(line, poly)
% ans =
% 10 5
% 0 5
% % also return indices of edges
% [inters, inds] = intersectLinePolygon(line, poly)
% inters =
% 10 5
% 0 5
% inds =
% 4
% 2
%
% % Potentially prolematic case
% % create a polygon with various configurations at y=50
% poly = [10 30;30 50;45 30; 50 50; 60 70; 70 50; ...
% 90 30; 80 80; 50 80; 40 50; 30 80; 20 80];
% figure; axis([0 100 0 100]); hold on;
% drawPolygon(poly, 'b'); drawPoint(poly, 'b.');
% % Computes intersection with horizontal line at y=50
% line = [10 50 2 0]; drawLine(line, 'm');
% points = intersectLinePolygon(line, poly);
% % result is a 6-by-2 numeric array, with a double intersection
% % (indices 2 and 3), resulting in five displayed intersections.
% drawPoint(points, 'ko');
% % sort intersection points according to x-coordinate
% points2 = sortrows(points, 1);
% % display pairs of successive intersection points as colored lines
% for i = 1:2:size(points2, 1)
% drawEdge(points2(i,:), points2(i+1,:), 'linewidth', 2);
% end
%
% References
% https://web.cs.ucdavis.edu/~ma/ECS175_S00/Notes/0411_b.pdf
% https://alienryderflex.com/polygon_fill/
%
% See also
% lines2d, polygons2d, intersectLines, intersectRayPolygon, polygonEdges
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2003-10-31, using Matlab 7.9.0.529 (R2009b)
% Copyright 2003-2023 INRA - Cepia Software Platform
% line origin and angle
ox = line(1);
oy = line(2);
dx = line(3);
dy = line(4);
% create transform matrix that project line onto the horizontal axis
% (then, computation of intersections rely only on the y-coordinate)
theta = atan2(dy, dx);
s = hypot(dx, dy);
cot = cos(theta) / s;
sit = sin(theta) / s;
transfo = [cot sit 0; -sit cot 0; 0 0 1] * [1 0 -ox; 0 1 -oy; 0 0 1];
% number of vertices in polygon
nVertices = size(poly, 1);
% create arrays for storing x-coordinates and edge inds of intersections
linePositions = [];
edgeInds = [];
% retrieve previous vertex and its y-coordinate
ivp = nVertices;
previousVertex = transformPoint(poly(ivp,:), transfo);
yvp = previousVertex(2);
% iterate over indices of first edge vertex
for iv = 1:nVertices
% current vertex and its y-coordinate
currentVertex = transformPoint(poly(iv,:), transfo);
yv = currentVertex(2);
% check conditions for intersection
% either if:
% 1) previous vertex is above or on, and current vertex is strictly below
% 2) previous vertex is strictly below, and current vertex is above or on
if yvp >= 0 && yv < 0 || yvp < 0 && yv >= 0
% slope of current edge (dy cannot be zero due to above condition)
edgeDx = currentVertex(1) - previousVertex(1);
edgeDy = currentVertex(2) - previousVertex(2);
% position of intersection on the horizontal line
currentPos = currentVertex(1) - yv * edgeDx / edgeDy ;
% add to list of intersections
linePositions = [linePositions ; currentPos]; %#ok<AGROW>
% keep list if edge indices
edgeInds = [edgeInds ; ivp]; %#ok<AGROW>
end
% switch current vertex to previous vertex
previousVertex = currentVertex;
ivp = iv; % keep edge index for optional output
yvp = yv;
end
% format output result into a N-by-2 array of points
if ~isempty(linePositions)
points = [linePositions zeros(size(linePositions))];
points = transformPoint(points, inv(transfo));
else
points = [];
end
|