1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function [min_width, min_angle] = minimumCaliperDiameter(points)
%MINIMUMCALIPERDIAMETER Minimum caliper diameter of a set of points.
%
% WIDTH = minimumCaliperDiameter(POINTS)
% Computes the minimum width of a set of points. As polygons and
% polylines are represented as point lists, this function works also for
% polygons and polylines.
%
% [WIDTH THETA] = minimumCaliperDiameter(POINTS)
% Also returns the direction of minimum width. The direction corresponds
% to the horizontal angle of the edge that minimizes the width. THETA is
% given in radians, between 0 and PI.
%
%
% Example
% % Compute minimal caliper diameter, and check coords of rotated points
% % have expected extent
% points = randn(30, 2);
% [width theta] = minimumCaliperDiameter(points);
% points2 = transformPoint(points, createRotation(-theta));
% diff = max(points2) - min(points2);
% abs(width - diff(2)) < 1e-10
% ans =
% 1
%
% References
% Algorithms use rotating caliper. Implementation was based on that of
% Wikipedia:
% http://en.wikipedia.org/wiki/Rotating_calipers
%
% See also
% polygons2d, convexHull, orientedBox
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2011-04-08, using Matlab 7.9.0.529 (R2009b)
% Copyright 2011-2023 INRA - Cepia Software Platform
% first, compute convex hull of the polygon
inds = convhull(points(:,1), points(:,2));
hull = points(inds, :);
% if first and last points are the same, remove the last one
if inds(1) == inds(end)
hull = hull(1:end-1, :);
end
% number of hull vertices
nV = size(hull, 1);
% default values
rotated_angle = 0;
min_width = inf;
min_angle = 0;
% avoid degenerated cases
if nV < 3
return;
end
[tmp, p_a] = min(hull(:, 2)); %#ok<ASGLU>
[tmp, p_b] = max(hull(:, 2)); %#ok<ASGLU>
caliper_a = [ 1 0]; % Caliper A points along the positive x-axis
caliper_b = [-1 0]; % Caliper B points along the negative x-axis
while rotated_angle < pi
% compute the direction vectors corresponding to each edge
ind_a2 = mod(p_a, nV) + 1;
vector_a = hull(ind_a2, :) - hull(p_a, :);
ind_b2 = mod(p_b, nV) + 1;
vector_b = hull(ind_b2, :) - hull(p_b, :);
% Determine the angle between each caliper and the next adjacent edge
% in the polygon
angle_a = vectorAngle(caliper_a, vector_a);
angle_b = vectorAngle(caliper_b, vector_b);
% Determine the smallest of these angles
minAngle = min(angle_a, angle_b);
% Rotate the calipers by the smallest angle
caliper_a = rotateVector(caliper_a, minAngle);
caliper_b = rotateVector(caliper_b, minAngle);
rotated_angle = rotated_angle + minAngle;
% compute current width, and update opposite vertex
if angle_a < angle_b
line = createLine(hull(p_a, :), hull(ind_a2, :));
width = distancePointLine(hull(p_b, :), line);
p_a = mod(p_a, nV) + 1;
else
line = createLine(hull(p_b, :), hull(ind_b2, :));
width = distancePointLine(hull(p_a, :), line);
p_b = mod(p_b, nV) + 1;
end
% update minimum width and corresponding angle if needed
if width < min_width
min_width = width;
min_angle = rotated_angle;
end
end
|