1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function loops = polygonLoops(poly, varargin)
%POLYGONLOOPS Divide a possibly self-intersecting polygon into a set of simple loops.
%
% LOOPS = polygonLoops(POLYGON);
% POLYGON is a polygone defined by a series of vertices,
% LOOPS is a cell array of polygons, containing the same vertices of the
% original polygon, but no loop self-intersect, and no couple of loops
% intersect each other.
%
% Example:
% poly = [0 0;0 10;20 10;20 20;10 20;10 0];
% loops = polygonLoops(poly);
% figure(1); hold on;
% drawPolygon(loops);
% polygonArea(loops)
%
% See also
% polygons2d, polygonSelfIntersections
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2009-06-15, using Matlab 7.7.0.471 (R2008b)
% Copyright 2009-2023 INRA - Cepia Software Platform
% tolerance for detecting two vertices as equal
tol = 1e-14;
% parse optional arguments
while length(varargin) > 1
pname = varargin{1};
if ~ischar(pname)
error('Expect optional arguments as name-value pairs');
end
if strcmpi(pname, 'tolerance')
tol = varargin{2};
else
error(['Unknown parameter name: ' pname]);
end
varargin(1:2) = [];
end
%% Initialisations
% compute intersections
[inters, pos1, pos2] = polygonSelfIntersections(poly, 'tolerance', tol);
% case of a polygon without self-intersection
if isempty(inters)
loops = {poly};
return;
end
% array for storing loops
loops = cell(0, 1);
% sort intersection points with respect to their position on the polygon
[positions, order] = sortrows([pos1 pos2 ; pos2 pos1]);
inters = [inters ; inters];
inters = inters(order, :);
%% First loop
% initialize the beginning of the loop
pos0 = 0;
loop = polygonSubcurve(poly, pos0, positions(1, 1));
loop(end, :) = inters(1,:);
vertex = inters(1,:);
% prepare iteration on positions
pos = positions(1, 2);
positions(1, :) = [];
inters(1,:) = [];
while true
% index of next intersection point
ind = find(positions(:,1) > pos, 1, 'first');
% if not index is found, the current loop is complete
if isempty(ind)
break;
end
% compute the portion of curve between the two intersection points
portion = polygonSubcurve(poly, pos, positions(ind, 1));
% ensure extremities have been computed only once
portion(1, :) = vertex;
vertex = inters(ind, :);
portion(end, :) = vertex;
% add the current portion of curve
loop = [loop; portion]; %#ok<AGROW>
% update current position on the polygon
pos = positions(ind, 2);
% remove processed intersection
positions(ind, :) = [];
inters(ind,:) = [];
end
% append the last portion of curve
loop = [loop ; polygonSubcurve(poly, pos, pos0)];
% remove redundant vertices
loop(sum(loop(1:end-1,:) == loop(2:end,:) ,2)==2, :) = [];
if sum(diff(loop([1 end], :)) == 0) == 2
loop(end, :) = [];
end
% add current loop to the list of loops
loops{1} = loop;
%% Other loops
Nl = 1;
while ~isempty(positions)
% initialize the next loop
loop = [];
pos0 = positions(1, 2);
pos = positions(1, 2);
vertex = inters(1,:);
while true
% index of next intersection point
ind = find(positions(:,1) > pos, 1, 'first');
% compute the portion of curve between the two intersection points
portion = polygonSubcurve(poly, pos, positions(ind, 1));
% ensure extremities have been computed only once
portion(1, :) = vertex;
vertex = inters(ind, :);
portion(end, :) = vertex;
% append the current portion of curve
loop = [loop ; portion]; %#ok<AGROW>
% update current position on the polygon
pos = positions(ind, 2);
% remove processed intersection
positions(ind, :) = [];
inters(ind,:) = [];
% if not found, current loop is processed
if pos == pos0
break;
end
end
% remove redundant vertices
loop(sum(loop(1:end-1,:) == loop(2:end,:) ,2)==2, :) = []; %#ok<AGROW>
if sum(diff(loop([1 end], :))==0) == 2
loop(end, :) = [];
end
% add current loop to the list of loops
Nl = Nl + 1;
loops{Nl} = loop;
end
|