File: polygonSkeleton.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (171 lines) | stat: -rw-r--r-- 6,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function varargout = polygonSkeleton(poly, varargin)
%POLYGONSKELETON Skeletonization of a polygon with a dense distribution of vertices.
%
%   [V, ADJ] = polygonSkeleton(POLY)
%   POLY is given as a N-by-2 array of polygon vertex coordinates. The
%   result is given a Nv-by-2 array of skeleton vertex coordinates, and an
%   adjacency list, as a NV-by-1 cell array. Each cell contains indices of
%   vertices adjacent to the vertex indexed by the cell.
%
%   [V, ADJ, RAD] = polygonSkeleton(POLY)
%   Also returns the radius of each vertex, corresponding to the distance
%   between the vertex and the closest point of the original contour
%   polygon.
%
%   SKEL = polygonSkeleton(POLY)
%   Concatenates the results in a struct SKEL with following fields:
%   * vertices  the Nv-by-2 array of skeleton vertex coordinates
%   * adjList   the adjacency list of each vertex, as a Nv-by-1 cell array.
%   * radius    the Nv-by-1 array of radius for each vertex
%
%   Example
%     % start from a binary shape
%     img = imread('circles.png');
%     img = imFillHoles(img);
%     figure; imshow(img); hold on;
%     % compute a smooth contour
%     cntList = imContours(img);
%     cnts = smoothPolygon(cntList{1}, 5);
%     drawPolygon(cnts, 'g');
%     % compute skeleton
%     [vertices, adjList] = polygonSkeleton(poly);
%     % convert adjacency list to an edge array
%     edges = adjacencyListToEdges(adjList);
%     % draw the skeleton graph
%     drawGraphEdges(vertices, edges);
%
%   See also 
%     graphs, adjacencyListToEdges

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2020-05-29, using Matlab 9.8.0.1323502 (R2020a)
% Copyright 2020-2023 INRAE - BIA Research Unit - BIBS Platform (Nantes)

%% Voronoi Diagram computation

% Compute Voronoi Diagram, using polygon vertices as germs.
[V, C] = voronoin(poly);

% compute number of elements of each array
nVertices   = size(V, 1);
nCells      = size(C, 1);

% Detection of the vertices located inside the contour
insideFlag = inpolygon(V(:,1), V(:,2), poly(:,1), poly(:,2));
innerVertices = V(insideFlag, :);

% indices of inner vertices
indsInside = find(insideFlag);
nInnerVertices = length(indsInside);

% compute map between voronoi vertex indices and skeleton vertex indices.
vertexIndexMap = zeros(nVertices, 1);
for iVertex = 1:length(indsInside)
    vertexIndexMap(indsInside(iVertex)) = iVertex;
end


%% Compute the topology of the skeleton
%
% Compute the topology as a list of adjacent vertex indices for each vertex
% inside the polygon.
% Need to convert between voronoi indices and skeleton indices.

% allocate adjacncy list
adjList = cell(nInnerVertices, 1);
vertexGermInds = zeros(nInnerVertices, 1);

% iterate on voronoi cells to compute skeleton by linking adjacent vertices
% (avoiding first cell which is located at infinity by convention)
for iGerm = 2:nCells
    % vertices of current cell
    cellVertices = C{iGerm};
    nCellVertices = length(cellVertices);
    
    % iterate on vertices of current cell
    for k = 1:nCellVertices
        % index of current voronoi vertex
        iVertex = cellVertices(k);
        
        % process only vertices within the contour
        if insideFlag(iVertex) == 0
            continue;
        end
        
        % convert voronoi vertex index to skeleton vertex index
        indV1 = vertexIndexMap(iVertex);
        
        % update the reference germ associated to current skeleton vertex
        vertexGermInds(indV1) = iGerm;
        
        % compute indices of adjacent vertices (in cell)
        iPrev = cellVertices(mod(k - 2, nCellVertices) + 1);
        iNext = cellVertices(mod(k, nCellVertices) + 1);
        
        % keep only the neighbors within the polygon
        if insideFlag(iPrev) == 1
            adjList{indV1} = [adjList{indV1} vertexIndexMap(iPrev)];
        end
        if insideFlag(iNext) == 1
            adjList{indV1} = [adjList{indV1} vertexIndexMap(iNext)];
        end
    end
end

% cleanup to avoid duplicate indices
for iVertex = 1:nInnerVertices
    adjList{iVertex} = unique(adjList{iVertex});
end


%% Compute radius list

% for each voronoi vertex inside the polygon, compute the distance to
% original polygon.
% Find indices of germs associated to each vertex.
% By construction, each vertex is the circumcenter of three germs.
radiusList = zeros(nInnerVertices, 1);
for iVertex = 1:nInnerVertices
    radiusList(iVertex) = norm(poly(vertexGermInds(iVertex),:) - innerVertices(iVertex,:));
end


%% Format output

if nargout <= 1
    % format output to a struct
    varargout{1} = struct('vertices', {innerVertices}, 'adjList', {adjList}, 'radius', {radiusList});
elseif nargout == 2
    varargout = {innerVertices, adjList};
elseif nargout == 3
    varargout = {innerVertices, adjList, radiusList};
end