File: polylineSelfIntersections.m

package info (click to toggle)
octave-matgeom 1.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,584 kB
  • sloc: objc: 469; makefile: 10
file content (228 lines) | stat: -rw-r--r-- 7,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
## Copyright (C) 2024 David Legland
## All rights reserved.
## 
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
## 
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
## 
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## 
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.

function varargout = polylineSelfIntersections(poly, varargin)
%POLYLINESELFINTERSECTIONS Find self-intersection points of a polyline.
%
%   Computes self-intersections of a polyline, eventually specifying if
%   polyline is closed or open, and eventually returning position of
%   intersection points on polyline.
%   For common use cases, the intersectPolylines function may return the
%   desired result in a faster way.
%
%
%   PTS = polylineSelfIntersections(POLY);
%   Returns the position of self intersections of the given polyline.
%
%   PTS = polylineSelfIntersections(POLY, CLOSED);
%   Adds an options to specify if the polyline is closed (i.e., is a
%   polygon), or open (the default). CLOSED can be a boolean, or one of
%   'closed' or 'open'.
%
%   [PTS, POS1, POS2] = polylineSelfIntersections(POLY);
%   Also return the 2 positions of each intersection point (the position
%   when meeting point for first time, then position when meeting point
%   for the second time).
%
%   [...] = polylineSelfIntersections(POLY, 'tolerance', TOL)
%   Specifies an additional parameter to decide whether two intersection
%   points should be considered the same, based on their Euclidean
%   distance.  
%
%
%   Example
%       % use a gamma-shaped polyline
%       poly = [0 0;0 10;20 10;20 20;10 20;10 0];
%       polylineSelfIntersections(poly)
%       ans = 
%           10 10
%
%       % use a 'S'-shaped polyline
%       poly = [10 0;0 0;0 10;20 10;20 20;10 20];
%       polylineSelfIntersections(poly)
%       ans =
%           Empty matrix: 0-by-2
%       polylineSelfIntersections(poly, 'closed')
%       ans = 
%           10 10
%
%   See also 
%   polygons2d, intersectPolylines, polygonSelfIntersections
%

% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2009-06-15, using Matlab 7.7.0.471 (R2008b)
% Copyright 2009-2023 INRA - Cepia Software Platform

%% Initialisations

% flag indicating whether the polyline is closed (polygon) or not
closed = false;

% the tolerance for comparing positions based on distances
tol = 1e-14;

% determine whether the polyline is open or closed
if ~isempty(varargin)
    closed = varargin{1};
    if ischar(closed)
        if strcmp(closed, 'closed')
            closed = true;
            varargin(1) = [];
        elseif strcmp(closed, 'open')
            closed = false;
            varargin(1) = [];
        end
    end
end

% parse optional arguments
while length(varargin) > 1
    pname = varargin{1};
    if ~ischar(pname)
        error('Expect optional arguments as name-value pairs');
    end
    
    if strcmpi(pname, 'tolerance')
        tol = varargin{2};
    else
        error(['Unknown parameter name: ' pname]);
    end
    varargin(1:2) = [];
end

% if polyline is closed, ensure the last point equals the first one
if closed
    if sum(abs(poly(end, :) - poly(1,:)) < tol) ~= 2
        poly = [poly; poly(1,:)];
    end
end

% arrays for storing results
points  = zeros(0, 2);
pos1    = zeros(0, 1);
pos2    = zeros(0, 1);

% number of edges
nEdges = size(poly, 1) - 1;


%% Main processing

% index of current intersection
ip = 0;

% iterate over each couple of edge ( (N-1)*(N-2)/2 iterations)
for iEdge1 = 1:nEdges-1
    % create first edge
    edge1 = [poly(iEdge1, :) poly(iEdge1+1, :)];
    for iEdge2 = iEdge1+2:nEdges
        % create second edge
        edge2 = [poly(iEdge2, :) poly(iEdge2+1, :)];

        % check conditions on bounding boxes, to avoid computing the
        % intersections
        if min(edge1([1 3])) > max(edge2([1 3]))
            continue;
        end
        if max(edge1([1 3])) < min(edge2([1 3]))
            continue;
        end
        if min(edge1([2 4])) > max(edge2([2 4]))
            continue;
        end
        if max(edge1([2 4])) < min(edge2([2 4]))
            continue;
        end
        
        % compute intersection point
        inter = intersectEdges(edge1, edge2, tol);
        
        if sum(isfinite(inter)) == 2
            % add point to the list
            ip = ip + 1;
            points(ip, :) = inter;
            
            % also compute positions on the polyline
            pos1(ip, 1) = iEdge1 - 1 + edgePosition(inter, edge1);
            pos2(ip, 1) = iEdge2 - 1 + edgePosition(inter, edge2);
        end
    end
end


%% Post-processing

% if polyline is closed, the first vertex was found as an intersection, so
% we need to remove it
if closed
    % identify the intersection between first and last edges using position
    % indices (pos1 < pos2 by construction)
    ind = pos1 == 0 & pos2 == size(poly,1)-1;
    points(ind,:) = [];
    pos1(ind)   = [];
    pos2(ind)   = [];
end

% remove multiple intersections
[points, I, J] = unique(points, 'rows', 'first'); %#ok<ASGLU>
pos1 = pos1(I);
pos2 = pos2(I);

% remove multiple intersections, using tolerance on distance
iInter = 0;
while iInter < size(points, 1) - 1
    iInter = iInter + 1;
% for iInter = 1:size(points, 1)-1
    % determine distance between current point and remaining points
    inds = iInter+1:size(points, 1);
    dists = distancePoints(points(iInter,:), points(inds, :));
    
    % identify index of other points located in a close neighborhood
    inds = inds(dists < tol);
    
    % remove redundant intersection points
    if ~isempty(inds)
        points(inds, :) = [];
        pos1(inds) = [];
        pos2(inds) = [];
    end
end


%% process output arguments

if nargout <= 1
    varargout{1} = points;
    
elseif nargout == 3
    varargout{1} = points;
    varargout{2} = pos1;
    varargout{3} = pos2;
end