1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
## Copyright (C) 2024 David Legland
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## The views and conclusions contained in the software and documentation are
## those of the authors and should not be interpreted as representing official
## policies, either expressed or implied, of the copyright holders.
function varargout = polylineSelfIntersections(poly, varargin)
%POLYLINESELFINTERSECTIONS Find self-intersection points of a polyline.
%
% Computes self-intersections of a polyline, eventually specifying if
% polyline is closed or open, and eventually returning position of
% intersection points on polyline.
% For common use cases, the intersectPolylines function may return the
% desired result in a faster way.
%
%
% PTS = polylineSelfIntersections(POLY);
% Returns the position of self intersections of the given polyline.
%
% PTS = polylineSelfIntersections(POLY, CLOSED);
% Adds an options to specify if the polyline is closed (i.e., is a
% polygon), or open (the default). CLOSED can be a boolean, or one of
% 'closed' or 'open'.
%
% [PTS, POS1, POS2] = polylineSelfIntersections(POLY);
% Also return the 2 positions of each intersection point (the position
% when meeting point for first time, then position when meeting point
% for the second time).
%
% [...] = polylineSelfIntersections(POLY, 'tolerance', TOL)
% Specifies an additional parameter to decide whether two intersection
% points should be considered the same, based on their Euclidean
% distance.
%
%
% Example
% % use a gamma-shaped polyline
% poly = [0 0;0 10;20 10;20 20;10 20;10 0];
% polylineSelfIntersections(poly)
% ans =
% 10 10
%
% % use a 'S'-shaped polyline
% poly = [10 0;0 0;0 10;20 10;20 20;10 20];
% polylineSelfIntersections(poly)
% ans =
% Empty matrix: 0-by-2
% polylineSelfIntersections(poly, 'closed')
% ans =
% 10 10
%
% See also
% polygons2d, intersectPolylines, polygonSelfIntersections
%
% ------
% Author: David Legland
% E-mail: david.legland@inrae.fr
% Created: 2009-06-15, using Matlab 7.7.0.471 (R2008b)
% Copyright 2009-2023 INRA - Cepia Software Platform
%% Initialisations
% flag indicating whether the polyline is closed (polygon) or not
closed = false;
% the tolerance for comparing positions based on distances
tol = 1e-14;
% determine whether the polyline is open or closed
if ~isempty(varargin)
closed = varargin{1};
if ischar(closed)
if strcmp(closed, 'closed')
closed = true;
varargin(1) = [];
elseif strcmp(closed, 'open')
closed = false;
varargin(1) = [];
end
end
end
% parse optional arguments
while length(varargin) > 1
pname = varargin{1};
if ~ischar(pname)
error('Expect optional arguments as name-value pairs');
end
if strcmpi(pname, 'tolerance')
tol = varargin{2};
else
error(['Unknown parameter name: ' pname]);
end
varargin(1:2) = [];
end
% if polyline is closed, ensure the last point equals the first one
if closed
if sum(abs(poly(end, :) - poly(1,:)) < tol) ~= 2
poly = [poly; poly(1,:)];
end
end
% arrays for storing results
points = zeros(0, 2);
pos1 = zeros(0, 1);
pos2 = zeros(0, 1);
% number of edges
nEdges = size(poly, 1) - 1;
%% Main processing
% index of current intersection
ip = 0;
% iterate over each couple of edge ( (N-1)*(N-2)/2 iterations)
for iEdge1 = 1:nEdges-1
% create first edge
edge1 = [poly(iEdge1, :) poly(iEdge1+1, :)];
for iEdge2 = iEdge1+2:nEdges
% create second edge
edge2 = [poly(iEdge2, :) poly(iEdge2+1, :)];
% check conditions on bounding boxes, to avoid computing the
% intersections
if min(edge1([1 3])) > max(edge2([1 3]))
continue;
end
if max(edge1([1 3])) < min(edge2([1 3]))
continue;
end
if min(edge1([2 4])) > max(edge2([2 4]))
continue;
end
if max(edge1([2 4])) < min(edge2([2 4]))
continue;
end
% compute intersection point
inter = intersectEdges(edge1, edge2, tol);
if sum(isfinite(inter)) == 2
% add point to the list
ip = ip + 1;
points(ip, :) = inter;
% also compute positions on the polyline
pos1(ip, 1) = iEdge1 - 1 + edgePosition(inter, edge1);
pos2(ip, 1) = iEdge2 - 1 + edgePosition(inter, edge2);
end
end
end
%% Post-processing
% if polyline is closed, the first vertex was found as an intersection, so
% we need to remove it
if closed
% identify the intersection between first and last edges using position
% indices (pos1 < pos2 by construction)
ind = pos1 == 0 & pos2 == size(poly,1)-1;
points(ind,:) = [];
pos1(ind) = [];
pos2(ind) = [];
end
% remove multiple intersections
[points, I, J] = unique(points, 'rows', 'first'); %#ok<ASGLU>
pos1 = pos1(I);
pos2 = pos2(I);
% remove multiple intersections, using tolerance on distance
iInter = 0;
while iInter < size(points, 1) - 1
iInter = iInter + 1;
% for iInter = 1:size(points, 1)-1
% determine distance between current point and remaining points
inds = iInter+1:size(points, 1);
dists = distancePoints(points(iInter,:), points(inds, :));
% identify index of other points located in a close neighborhood
inds = inds(dists < tol);
% remove redundant intersection points
if ~isempty(inds)
points(inds, :) = [];
pos1(inds) = [];
pos2(inds) = [];
end
end
%% process output arguments
if nargout <= 1
varargout{1} = points;
elseif nargout == 3
varargout{1} = points;
varargout{2} = pos1;
varargout{3} = pos2;
end
|