1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
## Copyright (C) 2012 Alexander Barth <barth.alexander@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{s} =} var(@var{A}, @var{opt}, @var{dim})
## Compute the variance along dimension DIM.
##
## If OPT is equal to 1, then the variance is bias-corrected.
## @end deftypefn
function s = var(self,opt,varargin)
if nargin == 1
opt = 0;
elseif isempty(opt)
opt = 0;
endif
m = mean(self,varargin{:});
funred = @plus;
funelem = @(x) (x-m).^2;
[s,n] = reduce(self,funred,funelem,varargin{:});
if isempty(s)
s = 0;
else
if opt == 0
s = s/(n-1);
else
s = s/n;
endif
endif
endfunction
|