File: nonlin_min.m

package info (click to toggle)
octave-optim 1.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 960 kB
  • sloc: cpp: 1,125; makefile: 66
file content (1420 lines) | stat: -rw-r--r-- 50,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
## Copyright (C) 2012 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{p}, @var{objf}, @var{cvg}, @var{outp}] =} nonlin_min (@var{f}, @var{pin})
## @deftypefnx {Function File} {[@var{p}, @var{objf}, @var{cvg}, @var{outp}] =} nonlin_min (@var{f}, @var{pin}, @var{settings})
##
## Frontend for constrained nonlinear minimization of a scalar objective
## function. The functions supplied by the user have a minimal
## interface; any additionally needed constants can be supplied by
## wrapping the user functions into anonymous functions.
##
## The following description applies to usage with vector-based
## parameter handling. Differences in usage for structure-based
## parameter handling will be explained in a separate section below.
##
## @var{f}: objective function. It gets a column vector of real
## parameters as argument. In gradient determination, this function may
## be called with an informational second argument, whose content
## depends on the function for gradient determination.
##
## @var{pin}: real column vector of initial parameters.
##
## @var{settings}: structure whose fields stand for optional settings
## referred to below. The fields can be set by @code{optimset()} with
## Octave versions 3.3.55 or greater; with older Octave versions, the
## fields must be set directly as structure-fields in the correct case.
##
## The returned values are the column vector of final parameters
## @var{p}, the final value of the objective function @var{objf}, an
## integer @var{cvg} indicating if and how optimization succeeded or
## failed, and a structure @var{outp} with additional information,
## curently with only one field: @var{niter}, the number of iterations.
## @var{cvg} is greater than zero for success and less than or equal to
## zero for failure; its possible values depend on the used backend and
## currently can be @code{0} (maximum number of iterations exceeded),
## @code{1} (fixed number of iterations completed, e.g. in stochastic
## optimizers), @code{2} (parameter change less than specified precision
## in two consecutive iterations), @code{3} (improvement in objective
## function less than specified), or @code{-4} (algorithm got stuck).
##
## @var{settings}:
##
## @code{Algorithm}: String specifying the backend. Currently available
## are @code{"lm_feasible"} (default) and @code{"siman"}. They are
## described in separate sections below.
##
## @code{objf_grad}: Function computing the gradient of the objective
## function with respect to the parameters, assuming residuals are
## reshaped to a vector. Default: finite differences. Will be called
## with the column vector of parameters and an informational structure
## as arguments. The structure has the fields @code{f}: value of
## objective function for current parameters, @code{fixed}: logical
## vector indicating which parameters are not optimized, so these
## partial derivatives need not be computed and can be set to zero,
## @code{diffp}, @code{diff_onesided}, @code{lbound}, @code{ubound}:
## identical to the user settings of this name, @code{plabels}:
## 1-dimensional cell-array of column-cell-arrays, each column with
## labels for all parameters, the first column contains the numerical
## indices of the parameters. The default gradient function will call
## the objective function with the second argument set with fields
## @code{f}: as the @code{f} passed to the gradient function,
## @code{plabels}: cell-array of 1x1 cell-arrays with the entries of the
## column-cell-arrays of @code{plabels} as passed to the jacobian
## function corresponding to current parameter, @code{side}: @code{0}
## for one-sided interval, @code{1} or @code{2}, respectively, for the
## sides of a two-sided interval, and @code{parallel}: logical scalar
## indicating parallel computation of partial derivatives.
##
## @code{objf_hessian}: Function computing the Hessian of the objective
## function with respect to the parameters. The default is backend
## specific. Will be called with the column vector of parameters as
## argument.
##
## @code{diffp}: column vector of fractional intervals (doubled for
## central intervals) supposed to be used by gradient functions
## performing finite differencing. Default: @code{.001 * ones (size
## (parameters))}. The default gradient function will use these as
## absolute intervals for parameters with value zero.
##
## @code{diff_onesided}: logical column vector indicating that one-sided
## intervals should be used by gradient functions performing finite
## differencing. Default: @code{false (size (parameters))}.
##
## @code{complex_step_derivative_objf},
## @code{complex_step_derivative_inequc},
## @code{complex_step_derivative_equc}: logical scalars, default: false.
## Estimate gradient of objective function, general inequality
## constraints, and general equality constraints, respectively, with
## complex step derivative approximation. Use only if you know that your
## objective function, function of general inequality constraints, or
## function of general equality constraints, respectively, is suitable
## for this. No user function for the respective gradient must be
## specified.
##
## @code{cstep}: scalar step size for complex step derivative
## approximation. Default: 1e-20.
##
## @code{fixed}: logical column vector indicating which parameters
## should not be optimized, but kept to their inital value. Fixing is
## done independently of the backend, but the backend may choose to fix
## additional parameters under certain conditions.
##
## @code{lbound}, @code{ubound}: column vectors of lower and upper
## bounds for parameters. Default: @code{-Inf} and @code{+Inf},
## respectively. The bounds are non-strict, i.e. parameters are allowed
## to be exactly equal to a bound. The default gradient function will
## respect bounds (but no further inequality constraints) in finite
## differencing.
##
## @code{inequc}: Further inequality constraints. Cell-array containing
## up to four entries, two entries for linear inequality constraints
## and/or one or two entries for general inequality constraints. Either
## linear or general constraints may be the first entries, but the two
## entries for linear constraints must be adjacent and, if two entries
## are given for general constraints, they also must be adjacent. The
## two entries for linear constraints are a matrix (say @code{m}) and a
## vector (say @code{v}), specifying linear inequality constraints of
## the form @code{m.' * parameters + v >= 0}. The first entry for
## general constraints must be a differentiable vector valued function
## (say @code{h}), specifying general inequality constraints of the form
## @code{h (p[, idx]) >= 0}; @code{p} is the column vector of optimized
## paraters and the optional argument @code{idx} is a logical index.
## @code{h} has to return the values of all constraints if @code{idx} is
## not given. It may choose to return only the indexed constraints if
## @code{idx} is given (so computation of the other constraints can be
## spared); in this case, the additional setting @code{inequc_f_idx} has
## to be set to @code{true}. In gradient determination, this function
## may be called with an informational third argument, whose content
## depends on the function for gradient determination. If a second entry
## for general inequality constraints is given, it must be a function
## computing the jacobian of the constraints with respect to the
## parameters. For this function, the description of @code{dfdp} above
## applies, with 2 exceptions: 1) it is called with 3 arguments since it
## has an additional argument @code{idx} --- a logical index --- at
## second position, indicating which rows of the jacobian must be
## returned (if the function chooses to return only indexed rows, the
## additional setting @code{inequc_df_idx} has to be set to
## @code{true}). 2) the default jacobian function calls @code{h} with 3
## arguments, since the argument @code{idx} is also supplied. Note that
## specifying linear constraints as general constraints will generally
## waste performance, even if further, non-linear, general constraints
## are also specified.
##
## @code{equc}: Equality constraints. Specified the same way as
## inequality constraints (see @code{inequc}). The respective additional
## settings are named @code{equc_f_idx} and @code{equc_df_idx}.
##
## @code{cpiv}: Function for complementary pivoting, usable in
## algorithms for constraints. Default: @ cpiv_bard. Only the default
## function is supplied with the package.
##
## @code{TolFun}: Minimum fractional improvement in objective function
## in an iteration (abortion criterium). Default: .0001.
##
## @code{MaxIter}: Maximum number of iterations (abortion criterium).
## Default: backend-specific.
##
## @code{fract_prec}: Column Vector, minimum fractional change of
## parameters in an iteration (abortion criterium if violated in two
## consecutive iterations). Default: backend-specific.
##
## @code{max_fract_change}: Column Vector, enforced maximum fractional
## change in parameters in an iteration. Default: backend-specific.
##
## @code{Display}: String indicating the degree of verbosity. Default:
## @code{"off"}. Possible values are currently @code{"off"} (no
## messages) and @code{"iter"} (some messages after each iteration).
## Support of this setting and its exact interpretation are
## backend-specific.
##
## @code{debug}: Logical scalar, default: @code{false}. Will be passed
## to the backend, which might print debugging information if true.
##
## Structure-based parameter handling
##
## The setting @code{param_order} is a cell-array with names of the
## optimized parameters. If not given, and initial parameters are a
## structure, all parameters in the structure are optimized. If initial
## parameters are a structure, it is an error if @code{param_order} is
## not given and there are any non-structure-based configuration items
## or functions.
##
## The initial parameters @var{pin} can be given as a structure
## containing at least all fields named in @code{param_order}. In this
## case the returned parameters @var{p} will also be a structure.
##
## Each user-supplied function can be called with the argument
## containing the current parameters being a structure instead of a
## column vector. For this, a corresponding setting must be set to
## @code{true}: @code{objf_pstruct} (objective function),
## @code{objf_grad_pstruct} (gradient of objective function),
## @code{objf_hessian_pstruct} (hessian of objective function),
## @code{f_inequc_pstruct} (general inequality constraints),
## @code{df_inequc_pstruct} (jacobian of general inequality
## constraints), @code{f_equc_pstruct} (general equality constraints),
## and @code{df_equc_pstruct} (jacobian of general equality
## constraints). If a gradient (jacobian) function is configured in such
## a way, it must return the entries (columns) of the gradient
## (jacobian) as fields of a structure under the respective parameter
## names. If the hessian function is configured in such a way, it must
## return a structure (say @code{h}) with fields e.g. as
## @code{h.a.b = value} for @code{value} being the 2nd partial derivative
## with respect to @code{a} and @code{b}. There is no need to also
## specify the field @code{h.b.a} in this example.
##
## Similarly, for specifying linear constraints, instead of the matrix
## (called @code{m} above), a structure containing the rows of the
## matrix in fields under the respective parameter names can be given.
## In this case, rows containing only zeros need not be given.
##
## The vector-based settings @code{lbound}, @code{ubound},
## @code{fixed}, @code{diffp}, @code{diff_onesided}, @code{fract_prec},
## and @code{max_fract_change} can be replaced by the setting
## @code{param_config}. It is a structure that can contain fields named
## in @code{param_order}. For each such field, there may be subfields
## with the same names as the above vector-based settings, but
## containing a scalar value for the respective parameter. If
## @code{param_config} is specified, none of the above
## vector/matrix-based settings may be used.
##
## Additionally, named parameters are allowed to be non-scalar real
## arrays. In this case, their dimensions are given by the setting
## @code{param_dims}, a cell-array of dimension vectors, each containing
## at least two dimensions; if not given, dimensions are taken from the
## initial parameters, if these are given in a structure. Any
## vector-based settings or not structure-based linear constraints then
## must correspond to an order of parameters with all parameters
## reshaped to vectors and concatenated in the user-given order of
## parameter names. Structure-based settings or structure-based initial
## parameters must contain arrays with dimensions reshapable to those of
## the respective parameters.
##
## Description of backends
##
## "lm_feasible"
##
## A Levenberg/Marquardt-like optimizer, attempting to honour
## constraints throughout the course of optimization. This means that
## the initial parameters must not violate constraints (to find an
## initial feasible set of parameters, e.g. Octaves @code{sqp} can be
## used, by specifying an objective function which is constant or which
## returns the quadratic distance to the initial values). If the
## constraints need only be honoured in the result of the optimization,
## Octaves @code{sqp} may be preferable. The Hessian is either supplied
## by the user or is approximated by the BFGS algorithm.
##
## Returned value @var{cvg} will be @code{2} or @code{3} for success and
## @code{0} or @code{-4} for failure (see above for meaning).
##
## Backend-specific defaults are: @code{MaxIter}: 20, @code{fract_prec}:
## @code{zeros (size (parameters))}, @code{max_fract_change}: @code{Inf}
## for all parameters.
##
## Interpretation of @code{Display}: if set to @code{"iter"}, currently
## only information on applying @code{max_fract_change} is printed.
##
## "siman"
##
## A simulated annealing (stochastic) optimizer, changing all parameters
## at once in a single step, so being suitable for non-bound
## constraints.
##
## No gradient or hessian of the objective function is used. The
## settings @code{MaxIter}, @code{fract_prec}, @code{TolFun}, and
## @code{max_fract_change} are not honoured.
##
## Accepts the additional settings @code{T_init} (initial temperature,
## default 0.01), @code{T_min} (final temperature, default 1.0e-5),
## @code{mu_T} (factor of temperature decrease, default 1.005),
## @code{iters_fixed_T} (iterations within one temperature step, default
## 10), @code{max_rand_step} (column vector or structure-based
## configuration of maximum random steps for each parameter, default
## 0.005 * @var{pin}), @code{stoch_regain_constr} (if @code{true},
## regain constraints after a random step, otherwise take new random
## value until constraints are met, default false), @code{trace_steps}
## (set field @code{trace} of @var{outp} with a matrix with a row for
## each step, first column iteration number, second column repeat number
## within iteration, third column value of objective function, rest
## columns parameter values, default false), and @code{siman_log} (set
## field @code{log} of @var{outp} with a matrix with a row for each
## iteration, first column temperature, second column value of objective
## function, rest columns numbers of tries with decrease, no decrease
## but accepted, and no decrease and rejected.
##
## Steps with increase @code{diff} of objective function are accepted if
## @code{rand (1) < exp (- diff / T)}, where @code{T} is the temperature
## of the current iteration.
##
## If regaining of constraints failed, optimization will be aborted and
## returned value of @var{cvg} will be @code{0}. Otherwise, @var{cvg}
## will be @code{1}.
##
## Interpretation of @code{Display}: if set to @code{"iter"}, an
## informational line is printed after each iteration.
##
## @end deftypefn

## disabled PKG_ADD: __all_opts__ ("nonlin_min");

function [p, objf, cvg, outp] = nonlin_min (f, pin, settings)

  if (compare_versions (version (), "3.3.55", "<"))
    ## optimset mechanism was fixed for option names with underscores
    ## sometime in 3.3.54+, if I remember right
    optimget = @ __optimget__;
  endif

  if (compare_versions (version (), "3.2.4", "<="))
    ## For bug #31484; but Octave 3.6... shows bug #36288 due to this
    ## workaround. Octave 3.7... seems to be all right.
    __dfdp__ = @ __dfdp__;
  endif

  ## some scalar defaults; some defaults are backend specific, so
  ## lacking elements in respective constructed vectors will be set to
  ## NA here in the frontend
  diffp_default = .001;
  stol_default = .0001;
  cstep_default = 1e-20;

  if (nargin == 1 && ischar (f) && strcmp (f, "defaults"))
    p = optimset ("param_config", [], \
		  "param_order", [], \
		  "param_dims", [], \
		  "f_inequc_pstruct", false, \
		  "f_equc_pstruct", false, \
		  "objf_pstruct", false, \
		  "df_inequc_pstruct", false, \
		  "df_equc_pstruct", false, \
		  "objf_grad_pstruct", false, \
		  "objf_hessian_pstruct", false, \
		  "lbound", [], \
		  "ubound", [], \
		  "objf_grad", [], \
		  "objf_hessian", [], \
		  "cpiv", @ cpiv_bard, \
		  "max_fract_change", [], \
		  "fract_prec", [], \
		  "diffp", [], \
		  "diff_onesided", [], \
		  "complex_step_derivative_objf", false, \
		  "complex_step_derivative_inequc", false, \
		  "complex_step_derivative_equc", false, \
		  "cstep", cstep_default, \
		  "fixed", [], \
		  "inequc", [], \
		  "equc", [], \
                  "inequc_f_idx", false, \
                  "inequc_df_idx", false, \
                  "equc_f_idx", false, \
                  "equc_df_idx", false, \
		  "TolFun", stol_default, \
		  "MaxIter", [], \
		  "Display", "off", \
		  "Algorithm", "lm_feasible", \
		  "T_init", .01, \
		  "T_min", 1.0e-5, \
		  "mu_T", 1.005, \
		  "iters_fixed_T", 10, \
		  "max_rand_step", [], \
		  "stoch_regain_constr", false, \
                  "trace_steps", false, \
                  "siman_log", false, \
		  "debug", false);
    return;
  endif

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (nargin == 2)
    settings = struct ();
  endif

  if (ischar (f))
    f = str2func (f);
  endif

  if (! (pin_struct = isstruct (pin)))
    if (! isvector (pin) || columns (pin) > 1)
      error ("initial parameters must be either a structure or a column vector");
    endif
  endif

  #### processing of settings and consistency checks

  pconf = optimget (settings, "param_config");
  pord = optimget (settings, "param_order");
  pdims = optimget (settings, "param_dims");
  f_inequc_pstruct = optimget (settings, "f_inequc_pstruct", false);
  f_equc_pstruct = optimget (settings, "f_equc_pstruct", false);
  f_pstruct = optimget (settings, "objf_pstruct", false);
  dfdp_pstruct = optimget (settings, "objf_grad_pstruct", f_pstruct);
  hessian_pstruct = optimget (settings, "objf_hessian_pstruct", f_pstruct);
  df_inequc_pstruct = optimget (settings, "df_inequc_pstruct", \
				f_inequc_pstruct);
  df_equc_pstruct = optimget (settings, "df_equc_pstruct", \
			      f_equc_pstruct);
  lbound = optimget (settings, "lbound");
  ubound = optimget (settings, "ubound");
  dfdp = optimget (settings, "objf_grad");
  if (ischar (dfdp)) dfdp = str2func (dfdp); endif
  hessian = optimget (settings, "objf_hessian");
  max_fract_change = optimget (settings, "max_fract_change");
  fract_prec = optimget (settings, "fract_prec");
  diffp = optimget (settings, "diffp");
  diff_onesided = optimget (settings, "diff_onesided");
  fixed = optimget (settings, "fixed");
  do_cstep = optimget (settings, "complex_step_derivative_objf", false);
  cstep = optimget (settings, "cstep", cstep_default);
  if (do_cstep && ! isempty (dfdp))
    error ("both 'complex_step_derivative_objf' and 'objf_grad' are set");
  endif
  do_cstep_inequc = \
      optimget (settings, "complex_step_derivative_inequc", false);
  do_cstep_equc = optimget (settings, "complex_step_derivative_equc", \
			    false);
  max_rand_step = optimget (settings, "max_rand_step");

  any_vector_conf = ! (isempty (lbound) && isempty (ubound) && \
		       isempty (max_fract_change) && \
		       isempty (fract_prec) && isempty (diffp) && \
		       isempty (diff_onesided) && isempty (fixed) && \
		       isempty (max_rand_step));

  ## collect constraints
  [mc, vc, f_genicstr, df_gencstr, user_df_gencstr] = \
      __collect_constraints__ (optimget (settings, "inequc"), \
			       do_cstep_inequc, "inequality constraints");
  [emc, evc, f_genecstr, df_genecstr, user_df_genecstr] = \
      __collect_constraints__ (optimget (settings, "equc"), \
			       do_cstep_equc, "equality constraints");
  mc_struct = isstruct (mc);
  emc_struct = isstruct (emc);

  ## correct "_pstruct" settings if functions are not supplied, handle
  ## constraint functions not honoring indices
  if (isempty (dfdp)) dfdp_pstruct = false; endif
  if (isempty (hessian)) hessian_pstruct = false; endif
  if (isempty (f_genicstr))
    f_inequc_pstruct = false;
  elseif (! optimget (settings, "inequc_f_idx", false))
    f_genicstr = @ (p, varargin) apply_idx_if_given \
        (f_genicstr (p, varargin{:}), varargin{:});
  endif
  if (isempty (f_genecstr))
    f_equc_pstruct = false;
  elseif (! optimget (settings, "equc_f_idx", false))
    f_genecstr = @ (p, varargin) apply_idx_if_given \
        (f_genecstr (p, varargin{:}), varargin{:});
  endif
  if (user_df_gencstr)
    if (! optimget (settings, "inequc_df_idx", false))
      df_gencstr = @ (varargin) df_gencstr (varargin{:})(varargin{2}, :);
    endif
  else
    df_inequc_pstruct = false;
  endif
  if (user_df_genecstr)
    if (! optimget (settings, "equc_df_idx", false))
      df_genecstr = @ (varargin) df_genecstr (varargin{:})(varargin{2}, :);
    endif
  else
    df_equc_pstruct = false;
  endif

  ## some settings require a parameter order
  if (pin_struct || ! isempty (pconf) || f_inequc_pstruct || \
      f_equc_pstruct || f_pstruct || dfdp_pstruct || \
      hessian_pstruct || df_inequc_pstruct || df_equc_pstruct || \
      mc_struct || emc_struct)
    if (isempty (pord))
      if (pin_struct)
	if (any_vector_conf || \
	    ! (f_pstruct && \
	       (f_inequc_pstruct || isempty (f_genicstr)) && \
	       (f_equc_pstruct || isempty (f_genecstr)) && \
	       (dfdp_pstruct || isempty (dfdp)) && \
	       (hessian_pstruct || isempty (hessian)) && \
	       (df_inequc_pstruct || ! user_df_gencstr) && \
	       (df_equc_pstruct || ! user_df_genecstr) && \
	       (mc_struct || isempty (mc)) && \
	       (emc_struct || isempty (emc))))
	  error ("no parameter order specified and constructing a parameter order from the structure of initial parameters can not be done since not all configuration or given functions are structure based");
	else
	  pord = fieldnames (pin);
	endif
      else
	error ("given settings require specification of parameter order or initial parameters in the form of a structure");
      endif
    endif
    pord = pord(:);
    if (pin_struct && ! all (isfield (pin, pord)))
      error ("some initial parameters lacking");
    endif
    if ((nnames = rows (unique (pord))) < rows (pord))
      error ("duplicate parameter names in 'param_order'");
    endif
    if (isempty (pdims))
      if (pin_struct)
	pdims = cellfun \
	    (@ size, fields2cell (pin, pord), "UniformOutput", false);
      else
	pdims = num2cell (ones (nnames, 2), 2);
      endif
    else
      pdims = pdims(:);
      if (pin_struct && \
	  ! all (cellfun (@ (x, y) prod (size (x)) == prod (y), \
			  struct2cell (pin), pdims)))
	error ("given param_dims and dimensions of initial parameters do not match");
      endif
    endif
    if (nnames != rows (pdims))
      error ("lengths of 'param_order' and 'param_dims' not equal");
    endif
    pnel = cellfun (@ prod, pdims);
    ppartidx = pnel;
    if (any (pnel > 1))
      pnonscalar = true;
      cpnel = num2cell (pnel);
      prepidx = cat (1, cellfun \
		     (@ (x, n) x(ones (1, n), 1), \
		      num2cell ((1:nnames).'), cpnel, \
		      "UniformOutput", false){:});
      epord = pord(prepidx, 1);
      psubidx = cat (1, cellfun \
		     (@ (n) (1:n).', cpnel, \
		      "UniformOutput", false){:});
    else
      pnonscalar = false; # some less expensive interfaces later
      prepidx = (1:nnames).';
      epord = pord;
      psubidx = ones (nnames, 1);
    endif
  else
    pord = []; # spares checks for given but not needed
  endif

  if (pin_struct)
    np = sum (pnel);
  else
    np = length (pin);
    if (! isempty (pord) && np != sum (pnel))
      error ("number of initial parameters not correct");
    endif
  endif

  plabels = num2cell (num2cell ((1:np).'));
  if (! isempty (pord))
    plabels = cat (2, plabels, num2cell (epord), \
		   num2cell (num2cell (psubidx)));
  endif

  ## some useful vectors
  zerosvec = zeros (np, 1);
  NAvec = NA (np, 1);
  Infvec = Inf (np, 1);
  falsevec = false (np, 1);
  sizevec = [np, 1];

  ## collect parameter-related configuration
  if (! isempty (pconf))
    ## use supplied configuration structure

    ## parameter-related configuration is either allowed by a structure
    ## or by vectors
    if (any_vector_conf)
      error ("if param_config is given, its potential items must not \
	  be configured in another way");
    endif

    ## supplement parameter names lacking in param_config
    nidx = ! isfield (pconf, pord);
    pconf = cell2fields ({struct()}(ones (1, sum (nidx))), \
			 pord(nidx), 2, pconf);

    pconf = structcat (1, fields2cell (pconf, pord){:});

    ## in the following, use reshape with explicit dimensions (instead
    ## of x(:)) so that errors are thrown if a configuration item has
    ## incorrect number of elements

    lbound = - Infvec;
    if (isfield (pconf, "lbound"))
      idx = ! fieldempty (pconf, "lbound");
      if (pnonscalar)
	lbound (idx(prepidx), 1) = \
	    cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     {pconf(idx).lbound}.', \
			     cpnel(idx), "UniformOutput", false){:});
      else
	lbound(idx, 1) = cat (1, pconf.lbound);
      endif
    endif

    ubound = Infvec;
    if (isfield (pconf, "ubound"))
      idx = ! fieldempty (pconf, "ubound");
      if (pnonscalar)
	ubound (idx(prepidx), 1) = \
	    cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     {pconf(idx).ubound}.', \
			     cpnel(idx), "UniformOutput", false){:});
      else
	ubound(idx, 1) = cat (1, pconf.ubound);
      endif
    endif

    max_fract_change = fract_prec = NAvec;

    if (isfield (pconf, "max_fract_change"))
      idx = ! fieldempty (pconf, "max_fract_change");
      if (pnonscalar)
	max_fract_change(idx(prepidx)) = \
	    cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     {pconf(idx).max_fract_change}.', \
			     cpnel(idx), \
			     "UniformOutput", false){:});
      else
	max_fract_change(idx) = [pconf.max_fract_change];
      endif
    endif

    if (isfield (pconf, "fract_prec"))
      idx = ! fieldempty (pconf, "fract_prec");
      if (pnonscalar)
	fract_prec(idx(prepidx)) = \
	    cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     {pconf(idx).fract_prec}.', cpnel(idx), \
			     "UniformOutput", false){:});
      else
	fract_prec(idx) = [pconf.fract_prec];
      endif
    endif

    diffp = zerosvec;
    diffp(:) = diffp_default;
    if (isfield (pconf, "diffp"))
      idx = ! fieldempty (pconf, "diffp");
      if (pnonscalar)
	diffp(idx(prepidx)) = \
	    cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     {pconf(idx).diffp}.', cpnel(idx), \
			     "UniformOutput", false){:});
      else
	diffp(idx) = [pconf.diffp];
      endif
    endif

    diff_onesided = fixed = falsevec;

    if (isfield (pconf, "diff_onesided"))
      idx = ! fieldempty (pconf, "diff_onesided");
      if (pnonscalar)
	diff_onesided(idx(prepidx)) = \
	    logical \
	    (cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			      {pconf(idx).diff_onesided}.', cpnel(idx), \
			     "UniformOutput", false){:}));
      else
	diff_onesided(idx) = logical ([pconf.diff_onesided]);
      endif
    endif

    if (isfield (pconf, "fixed"))
      idx = ! fieldempty (pconf, "fixed");
      if (pnonscalar)
	fixed(idx(prepidx)) = \
	    logical \
	    (cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			      {pconf(idx).fixed}.', cpnel(idx), \
			     "UniformOutput", false){:}));
      else
	fixed(idx) = logical ([pconf.fixed]);
      endif
    endif

    max_rand_step = NAvec;

    if (isfield (pconf, "max_rand_step"))
      idx = ! fieldempty (pconf, "max_rand_step");
      if (pnonscalar)
	max_rand_step(idx(prepidx)) = \
	    logical \
	    (cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			      {pconf(idx).max_rand_step}.',
			      cpnel(idx), \
			      "UniformOutput", false){:}));
      else
	max_rand_step(idx) = logical ([pconf.max_rand_step]);
      endif
    endif

  else
    ## use supplied configuration vectors

    if (isempty (lbound))
      lbound = - Infvec;
    elseif (any (size (lbound) != sizevec))
      error ("bounds: wrong dimensions");
    endif

    if (isempty (ubound))
      ubound = Infvec;
    elseif (any (size (ubound) != sizevec))
      error ("bounds: wrong dimensions");
    endif

    if (isempty (max_fract_change))
      max_fract_change = NAvec;
    elseif (any (size (max_fract_change) != sizevec))
      error ("max_fract_change: wrong dimensions");
    endif

    if (isempty (fract_prec))
      fract_prec = NAvec;
    elseif (any (size (fract_prec) != sizevec))
      error ("fract_prec: wrong dimensions");
    endif

    if (isempty (diffp))
      diffp = zerosvec;
      diffp(:) = diffp_default;
    else
      if (any (size (diffp) != sizevec))
	error ("diffp: wrong dimensions");
      endif
      diffp(isna (diffp)) = diffp_default;
    endif

    if (isempty (diff_onesided))
      diff_onesided = falsevec;
    else
      if (any (size (diff_onesided) != sizevec))
	error ("diff_onesided: wrong dimensions")
      endif
      diff_onesided(isna (diff_onesided)) = false;
      diff_onesided = logical (diff_onesided);
    endif

    if (isempty (fixed))
      fixed = falsevec;
    else
      if (any (size (fixed) != sizevec))
	error ("fixed: wrong dimensions");
      endif
      fixed(isna (fixed)) = false;
      fixed = logical (fixed);
    endif

    if (isempty (max_rand_step))
      max_rand_step = NAvec;
    elseif (any (size (max_rand_step) != sizevec))
      error ("max_rand_step: wrong dimensions");
    endif

  endif

  ## guaranty all (lbound <= ubound)
  if (any (lbound > ubound))
    error ("some lower bounds larger than upper bounds");
  endif

  #### consider whether initial parameters and functions are based on
  #### parameter structures or parameter vectors; wrappers for call to
  #### default function for jacobians

  ## initial parameters
  if (pin_struct)
    if (pnonscalar)
      pin = cat (1, cellfun (@ (x, n) reshape (x, n, 1), \
			     fields2cell (pin, pord), cpnel, \
			     "UniformOutput", false){:});
    else
      pin = cat (1, fields2cell (pin, pord){:});
    endif
  endif

  ## objective function
  if (f_pstruct)
    if (pnonscalar)
      f = @ (p, varargin) \
	  f (cell2struct \
	     (cellfun (@ reshape, mat2cell (p, ppartidx), \
		       pdims, "UniformOutput", false), \
	      pord, 1), varargin{:});
    else
      f = @ (p, varargin) \
	  f (cell2struct (num2cell (p), pord, 1), varargin{:});
    endif
  endif
  f_pin = f (pin);

  ## gradient of objective function
  if (isempty (dfdp))
    if (do_cstep)
      dfdp = @ (p, hook) jacobs (p, f, hook);
    else
      dfdp = @ (p, hook) __dfdp__ (p, f, hook);
    endif
  endif
  if (dfdp_pstruct)
    if (pnonscalar)
      dfdp = @ (p, hook) \
	  cat (2, \
	       fields2cell \
	       (dfdp (cell2struct \
		      (cellfun (@ reshape, mat2cell (p, ppartidx), \
				pdims, "UniformOutput", false), \
		       pord, 1), hook), \
		pord){:});
    else
      dfdp = @ (p, hook) \
	  cat (2, \
	       fields2cell \
	       (dfdp (cell2struct (num2cell (p), pord, 1), hook), \
		pord){:});
    endif
  endif

  ## hessian of objective function
  if (hessian_pstruct)
    if (pnonscalar)
      hessian = @ (p) \
	  hessian_struct2mat \
	  (hessian (cell2struct \
		    (cellfun (@ reshape, mat2cell (p, ppartidx), \
			      pdims, "UniformOutput", false), \
		     pord, 1)), pord);
    else
      hessian = @ (p) \
	  hessian_struct2mat \
	  (hessian (cell2struct (num2cell (p), pord, 1)), pord);
    endif
  endif

  ## function for general inequality constraints
  if (f_inequc_pstruct)
    if (pnonscalar)
      f_genicstr = @ (p, varargin) \
	  f_genicstr (cell2struct \
		      (cellfun (@ reshape, mat2cell (p, ppartidx), \
				pdims, "UniformOutput", false), \
		       pord, 1), varargin{:});
    else
      f_genicstr = @ (p, varargin) \
	  f_genicstr \
	  (cell2struct (num2cell (p), pord, 1), varargin{:});
    endif
  endif

  ## note this stage
  possibly_pstruct_f_genicstr = f_genicstr;

  ## jacobian of general inequality constraints
  if (df_inequc_pstruct)
    if (pnonscalar)
      df_gencstr = @ (p, func, idx, hook) \
	  cat (2, \
	       fields2cell \
	       (df_gencstr \
		(cell2struct \
		 (cellfun (@ reshape, mat2cell (p, ppartidx), \
			   pdims, "UniformOutput", false), pord, 1), \
		 func, idx, hook), \
		pord){:});
    else
      df_gencstr = @ (p, func, idx, hook) \
	  cat (2, \
	       fields2cell \
	       (df_gencstr (cell2struct (num2cell (p), pord, 1), \
			    func, idx, hook), \
		pord){:});
    endif
  endif

  ## function for general equality constraints
  if (f_equc_pstruct)
    if (pnonscalar)
      f_genecstr = @ (p, varargin) \
	  f_genecstr (cell2struct \
		      (cellfun (@ reshape, mat2cell (p, ppartidx), \
				pdims, "UniformOutput", false), \
		       pord, 1), varargin{:});
    else
      f_genecstr = @ (p, varargin) \
	  f_genecstr \
	  (cell2struct (num2cell (p), pord, 1), varargin{:});
    endif
  endif

  ## note this stage
  possibly_pstruct_f_genecstr = f_genecstr;

  ## jacobian of general equality constraints
  if (df_equc_pstruct)
    if (pnonscalar)
      df_genecstr = @ (p, func, idx, hook) \
	  cat (2, \
	       fields2cell \
	       (df_genecstr \
		(cell2struct \
		 (cellfun (@ reshape, mat2cell (p, ppartidx), \
			   pdims, "UniformOutput", false), pord, 1), \
		 func, idx, hook), \
		pord){:});
    else
      df_genecstr = @ (p, func, idx, hook) \
	  cat (2, \
	       fields2cell \
	       (df_genecstr (cell2struct (num2cell (p), pord, 1), \
			     func, idx, hook), \
		pord){:});
    endif
  endif

  ## linear inequality constraints
  if (mc_struct)
    idx = isfield (mc, pord);
    if (rows (fieldnames (mc)) > sum (idx))
      error ("unknown fields in structure of linear inequality constraints");
    endif
    smc = mc;
    mc = zeros (np, rows (vc));
    mc(idx(prepidx), :) = cat (1, fields2cell (smc, pord(idx)){:});
  endif

  ## linear equality constraints
  if (emc_struct)
    idx = isfield (emc, pord);
    if (rows (fieldnames (emc)) > sum (idx))
      error ("unknown fields in structure of linear equality constraints");
    endif
    semc = emc;
    emc = zeros (np, rows (evc));
    emc(idx(prepidx), :) = cat (1, fields2cell (semc, pord(idx)){:});
  endif

  ## parameter-related configuration for jacobian functions
  if (dfdp_pstruct || df_inequc_pstruct || df_equc_pstruct)
    if(pnonscalar)
      s_diffp = cell2struct \
	  (cellfun (@ reshape, mat2cell (diffp, ppartidx), \
		    pdims, "UniformOutput", false), pord, 1);
      s_diff_onesided = cell2struct \
	  (cellfun (@ reshape, mat2cell (diff_onesided, ppartidx), \
		    pdims, "UniformOutput", false), pord, 1);
      s_orig_lbound = cell2struct \
	  (cellfun (@ reshape, mat2cell (lbound, ppartidx), \
		    pdims, "UniformOutput", false), pord, 1);
      s_orig_ubound = cell2struct \
	  (cellfun (@ reshape, mat2cell (ubound, ppartidx), \
		    pdims, "UniformOutput", false), pord, 1);
      s_plabels = cell2struct \
	  (num2cell \
	   (cat (2, cellfun \
		 (@ (x) cellfun \
		  (@ reshape, mat2cell (cat (1, x{:}), ppartidx), \
		   pdims, "UniformOutput", false), \
		  num2cell (plabels, 1), "UniformOutput", false){:}), \
	    2), \
	   pord, 1);
      s_orig_fixed = cell2struct \
	  (cellfun (@ reshape, mat2cell (fixed, ppartidx), \
		    pdims, "UniformOutput", false), pord, 1);
    else
      s_diffp = cell2struct (num2cell (diffp), pord, 1);
      s_diff_onesided = cell2struct (num2cell (diff_onesided), pord, 1);
      s_orig_lbound = cell2struct (num2cell (lbound), pord, 1);
      s_orig_ubound = cell2struct (num2cell (ubound), pord, 1);
      s_plabels = cell2struct (num2cell (plabels, 2), pord, 1);
      s_orig_fixed = cell2struct (num2cell (fixed), pord, 1);
    endif
  endif

  #### some further values and checks

  if (any (fixed & (pin < lbound | pin > ubound)))
    warning ("some fixed parameters outside bounds");
  endif

  ## dimensions of linear constraints
  if (isempty (mc))
    mc = zeros (np, 0);
    vc = zeros (0, 1);
  endif
  if (isempty (emc))
    emc = zeros (np, 0);
    evc = zeros (0, 1);
  endif
  [rm, cm] = size (mc);
  [rv, cv] = size (vc);
  if (rm != np || cm != rv || cv != 1)
    error ("linear inequality constraints: wrong dimensions");
  endif
  [erm, ecm] = size (emc);
  [erv, ecv] = size (evc);
  if (erm != np || ecm != erv || ecv != 1)
    error ("linear equality constraints: wrong dimensions");
  endif

  ## note initial values of linear constraits
  pin_cstr.inequ.lin_except_bounds = mc.' * pin + vc;
  pin_cstr.equ.lin = emc.' * pin + evc;

  ## note number and initial values of general constraints
  if (isempty (f_genicstr))
    pin_cstr.inequ.gen = [];
    n_genicstr = 0;
  else
    n_genicstr = length (pin_cstr.inequ.gen = f_genicstr (pin));
  endif
  if (isempty (f_genecstr))
    pin_cstr.equ.gen = [];
    n_genecstr = 0;
  else
    n_genecstr = length (pin_cstr.equ.gen = f_genecstr (pin));
  endif

  #### collect remaining settings
  hook.TolFun = optimget (settings, "TolFun", stol_default);
  hook.MaxIter = optimget (settings, "MaxIter");
  if (ischar (hook.cpiv = optimget (settings, "cpiv", @ cpiv_bard)))
    hook.cpiv = str2func (hook.cpiv);
  endif
  hook.Display = optimget (settings, "Display", "off");
  hook.testing = optimget (settings, "debug", false);
  hook.siman.T_init = optimget (settings, "T_init", .01);
  hook.siman.T_min = optimget (settings, "T_min", 1.0e-5);
  hook.siman.mu_T = optimget (settings, "mu_T", 1.005);
  hook.siman.iters_fixed_T = optimget (settings, "iters_fixed_T", 10);
  hook.stoch_regain_constr = \
      optimget (settings, "stoch_regain_constr", false);
  hook.trace_steps = \
      optimget (settings, "trace_steps", false);
  hook.siman_log = \
      optimget (settings, "siman_log", false);
  backend = optimget (settings, "Algorithm", "lm_feasible");
  backend = map_matlab_algorithm_names (backend);
  backend = map_backend (backend);

  #### handle fixing of parameters
  orig_lbound = lbound;
  orig_ubound = ubound;
  orig_fixed = fixed;
  if (all (fixed))
    error ("no free parameters");
  endif

  nonfixed = ! fixed;
  if (any (fixed))
    ## backend (returned values and initial parameters)
    backend = @ (f, pin, hook) \
	backend_wrapper (backend, fixed, f, pin, hook);

    ## objective function
    f = @ (p, varargin) f (assign (pin, nonfixed, p), varargin{:});

    ## gradient of objective function
    dfdp = @ (p, hook) \
	dfdp (assign (pin, nonfixed, p), hook)(nonfixed);

    ## hessian of objective function
    if (! isempty (hessian))
      hessian = @ (p) \
	  hessian (assign (pin, nonfixed, p))(nonfixed, nonfixed);
    endif
    
    ## function for general inequality constraints
    f_genicstr = @ (p, varargin) \
	f_genicstr (assign (pin, nonfixed, p), varargin{:});
    
    ## jacobian of general inequality constraints
    df_gencstr = @ (p, func, idx, hook) \
	df_gencstr (assign (pin, nonfixed, p), func, idx, hook) \
	(:, nonfixed);

    ## function for general equality constraints
    f_genecstr = @ (p, varargin) \
	f_genecstr (assign (pin, nonfixed, p), varargin{:});

    ## jacobian of general equality constraints
    df_genecstr = @ (p, func, idx, hook) \
	df_genecstr (assign (pin, nonfixed, p), func, idx, hook) \
	(:, nonfixed);

    ## linear inequality constraints
    vc += mc(fixed, :).' * (tp = pin(fixed));
    mc = mc(nonfixed, :);

    ## linear equality constraints
    evc += emc(fixed, :).' * tp;
    emc = emc(nonfixed, :);

    ## _last_ of all, vectors of parameter-related configuration,
    ## including "fixed" itself
    lbound = lbound(nonfixed, :);
    ubound = ubound(nonfixed, :);
    max_fract_change = max_fract_change(nonfixed);
    fract_prec = fract_prec(nonfixed);
    max_rand_step = max_rand_step(nonfixed);
    fixed = fixed(nonfixed);
  endif

  #### supplement constants to jacobian functions

  ## gradient of objective function
  if (dfdp_pstruct)
    dfdp = @ (p, hook) \
	dfdp (p, cell2fields \
	      ({s_diffp, s_diff_onesided, s_orig_lbound, \
		s_orig_ubound, s_plabels, \
		cell2fields(num2cell(hook.fixed), pord(nonfixed), \
			    1, s_orig_fixed), cstep}, \
	       {"diffp", "diff_onesided", "lbound", "ubound", \
		"plabels", "fixed", "h"}, \
	       2, hook));
  else
    dfdp = @ (p, hook) \
	dfdp (p, cell2fields \
	      ({diffp, diff_onesided, orig_lbound, orig_ubound, \
		plabels, assign(orig_fixed, nonfixed, hook.fixed), \
		cstep}, \
	       {"diffp", "diff_onesided", "lbound", "ubound", \
		"plabels", "fixed", "h"}, \
	       2, hook));
  endif

  ## jacobian of general inequality constraints
  if (df_inequc_pstruct)
    df_gencstr = @ (p, func, idx, hook) \
	df_gencstr (p, func, idx, cell2fields \
		    ({s_diffp, s_diff_onesided, s_orig_lbound, \
		      s_orig_ubound, s_plabels, \
		      cell2fields(num2cell(hook.fixed), pord(nonfixed), \
				  1, s_orig_fixed), cstep}, \
		     {"diffp", "diff_onesided", "lbound", "ubound", \
		      "plabels", "fixed", "h"}, \
		     2, hook));
  else
    df_gencstr = @ (p, func, idx, hook) \
	df_gencstr (p, func, idx, cell2fields \
		    ({diffp, diff_onesided, orig_lbound, \
		      orig_ubound, plabels, \
		      assign(orig_fixed, nonfixed, hook.fixed), cstep}, \
		     {"diffp", "diff_onesided", "lbound", "ubound", \
		      "plabels", "fixed", "h"}, \
		     2, hook));
  endif

  ## jacobian of general equality constraints
  if (df_equc_pstruct)
    df_genecstr = @ (p, func, idx, hook) \
	df_genecstr (p, func, idx, cell2fields \
		     ({s_diffp, s_diff_onesided, s_orig_lbound, \
		       s_orig_ubound, s_plabels, \
		       cell2fields(num2cell(hook.fixed), pord(nonfixed), \
				   1, s_orig_fixed), cstep}, \
		      {"diffp", "diff_onesided", "lbound", "ubound", \
		       "plabels", "fixed", "h"}, \
		      2, hook));
  else
    df_genecstr = @ (p, func, idx, hook) \
	df_genecstr (p, func, idx, cell2fields \
		     ({diffp, diff_onesided, orig_lbound, \
		       orig_ubound, plabels, \
		       assign(orig_fixed, nonfixed, hook.fixed), cstep}, \
		      {"diffp", "diff_onesided", "lbound", "ubound", \
		       "plabels", "fixed", "h"}, \
		      2, hook));
  endif

  #### interfaces to constraints
  
  ## include bounds into linear inequality constraints
  tp = eye (sum (nonfixed));
  lidx = lbound != - Inf;
  uidx = ubound != Inf;
  mc = cat (2, tp(:, lidx), - tp(:, uidx), mc);
  vc = cat (1, - lbound(lidx, 1), ubound(uidx, 1), vc);

  ## concatenate linear inequality and equality constraints
  mc = cat (2, mc, emc);
  vc = cat (1, vc, evc);
  n_lincstr = rows (vc);

  ## concatenate general inequality and equality constraints
  if (n_genecstr > 0)
    if (n_genicstr > 0)
      nidxi = 1 : n_genicstr;
      nidxe = n_genicstr + 1 : n_genicstr + n_genecstr;
      f_gencstr = @ (p, idx, varargin) \
	  cat (1, \
	       f_genicstr (p, idx(nidxi), varargin{:}), \
	       f_genecstr (p, idx(nidxe), varargin{:}));
      df_gencstr = @ (p, idx, hook) \
	  cat (1, \
	       df_gencstr (p, @ (p, varargin) \
			   possibly_pstruct_f_genicstr \
			   (p, idx(nidxi), varargin{:}), \
			   idx(nidxi), \
			   setfield (hook, "f", \
				     hook.f(nidxi(idx(nidxi))))), \
	       df_genecstr (p, @ (p, varargin) \
			    possibly_pstruct_f_genecstr \
			    (p, idx(nidxe), varargin{:}), \
			    idx(nidxe), \
			    setfield (hook, "f", \
				      hook.f(nidxe(idx(nidxe))))));
    else
      f_gencstr = f_genecstr;
      df_gencstr = @ (p, idx, hook) \
	  df_genecstr (p, \
		       @ (p, varargin) \
		       possibly_pstruct_f_genecstr \
		       (p, idx, varargin{:}), \
		       idx, \
		       setfield (hook, "f", hook.f(idx)));
    endif
  else
    f_gencstr = f_genicstr;
    df_gencstr = @ (p, idx, hook) \
	df_gencstr (p, \
		    @ (p, varargin) \
		    possibly_pstruct_f_genicstr (p, idx, varargin{:}), \
		    idx, \
		    setfield (hook, "f", hook.f(idx)));
  endif    
  n_gencstr = n_genicstr + n_genecstr;

  ## concatenate linear and general constraints, defining the final
  ## function interfaces
  if (n_gencstr > 0)
    nidxl = 1:n_lincstr;
    nidxh = n_lincstr + 1 : n_lincstr + n_gencstr;
    f_cstr = @ (p, idx, varargin) \
	cat (1, \
	     mc(:, idx(nidxl)).' * p + vc(idx(nidxl), 1), \
	     f_gencstr (p, idx(nidxh), varargin{:}));
    df_cstr = @ (p, idx, hook) \
	cat (1, \
	     mc(:, idx(nidxl)).', \
	     df_gencstr (p, idx(nidxh), \
			 setfield (hook, "f", \
				   hook.f(nidxh))));
  else
    f_cstr = @ (p, idx, varargin) mc(:, idx).' * p + vc(idx, 1);
    df_cstr = @ (p, idx, hook) mc(:, idx).';
  endif

  ## define eq_idx (logical index of equality constraints within all
  ## concatenated constraints
  eq_idx = false (n_lincstr + n_gencstr, 1);
  eq_idx(n_lincstr + 1 - rows (evc) : n_lincstr) = true;
  n_cstr = n_lincstr + n_gencstr;
  eq_idx(n_cstr + 1 - n_genecstr : n_cstr) = true;

  #### prepare interface hook

  ## passed constraints
  hook.mc = mc;
  hook.vc = vc;
  hook.f_cstr = f_cstr;
  hook.df_cstr = df_cstr;
  hook.n_gencstr = n_gencstr;
  hook.eq_idx = eq_idx;
  hook.lbound = lbound;
  hook.ubound = ubound;

  ## passed values of constraints for initial parameters
  hook.pin_cstr = pin_cstr;

  ## passed function for gradient of objective function
  hook.dfdp = dfdp;

  ## passed function for hessian of objective function
  hook.hessian = hessian;

  ## passed function for complementary pivoting
  ## hook.cpiv = cpiv; # set before

  ## passed value of objective function for initial parameters
  hook.f_pin = f_pin;

  ## passed options
  hook.max_fract_change = max_fract_change;
  hook.fract_prec = fract_prec;
  ## hook.TolFun = ; # set before
  ## hook.MaxIter = ; # set before
  hook.fixed = fixed;
  hook.max_rand_step = max_rand_step;

  #### call backend

  [p, objf, cvg, outp] = backend (f, pin, hook);

  if (pin_struct)
    if (pnonscalar)
      p = cell2struct \
	  (cellfun (@ reshape, mat2cell (p, ppartidx), \
		    pdims, "UniformOutput", false), \
	   pord, 1);
    else
      p = cell2struct (num2cell (p), pord, 1);
    endif
  endif

endfunction

function backend = map_matlab_algorithm_names (backend)

  ## nothing done here at the moment

endfunction

function backend = map_backend (backend)

  switch (backend)
      ##    case "sqp_infeasible"
      ##      backend = "__sqp__";
      ##    case "sqp"
      ##      backend = "__sqp__";
    case "lm_feasible"
      backend = "__lm_feasible__";
    case "siman"
      backend = "__siman__";
    otherwise
      error ("no backend implemented for algorithm '%s'", backend);
  endswitch

  backend = str2func (backend);

endfunction

function [p, resid, cvg, outp] = backend_wrapper (backend, fixed, f, p, hook)

  [tp, resid, cvg, outp] = backend (f, p(! fixed), hook);

  p(! fixed) = tp;

endfunction

function lval = assign (lval, lidx, rval)

  lval(lidx) = rval;

endfunction

function m = hessian_struct2mat (s, pord)

  m = cell2mat (fields2cell \
		(structcat (1, NA, fields2cell (s, pord){:}), pord));

  idx = isna (m);

  m(idx) = (m.')(idx);

endfunction

function ret = __optimget__ (s, name, default)

  if (isfield (s, name))
    ret = s.(name);
  elseif (nargin > 2)
    ret = default;
  else
    ret = [];
  endif

endfunction

function ret = apply_idx_if_given  (ret, varargin)

  if (nargin > 1)
    ret = ret(varargin{1});
  endif

endfunction

%!demo
%! ## Example for default optimization (Levenberg/Marquardt with
%! ## BFGS), one non-linear equality constraint. Constrained optimum is
%! ## at p = [0; 1].
%! objective_function = @ (p) p(1)^2 + p(2)^2;
%! pin = [-2; 5];
%! constraint_function = @ (p) p(1)^2 + 1 - p(2);
%! [p, objf, cvg, outp] = nonlin_min (objective_function, pin, optimset ("equc", {constraint_function}))

%!demo
%! ## Example for simulated annealing, two parameters, "trace_steps"
%! ## is true;
%! t_init = .2;
%! t_min = .002;
%! mu_t = 1.002;
%! iters_fixed_t = 10;
%! init_p = [2; 2];
%! max_rand_step = [.2; .2];
%! [p, objf, cvg, outp] = nonlin_min (@ (p) (p(1)/10)^2 + (p(2)/10)^2 + .1 * (-cos(4*p(1)) - cos(4*p(2))), init_p, optimset ("algorithm", "siman", "max_rand_step", max_rand_step, "t_init", t_init, "T_min", t_min, "mu_t", mu_t, "iters_fixed_T", iters_fixed_t, "trace_steps", true));
%! p
%! objf
%! x = (outp.trace(:, 1) - 1) * iters_fixed_t + outp.trace(:, 2);
%! x(1) = 0;
%! plot (x, cat (2, outp.trace(:, 3:end), t_init ./ (mu_t .^ outp.trace(:, 1))))
%! legend ({"objective function value", "p(1)", "p(2)", "Temperature"})
%! xlabel ("subiteration")