File: LinearRegression.html

package info (click to toggle)
octave-optim 1.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,064 kB
  • ctags: 374
  • sloc: cpp: 1,126; perl: 158; makefile: 79
file content (102 lines) | stat: -rw-r--r-- 4,583 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<html lang="en">
<head>
<title>LinearRegression - optim_doc</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="optim_doc">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Residual-optimization.html#Residual-optimization" title="Residual optimization">
<link rel="prev" href="polyconf.html#polyconf" title="polyconf">
<link rel="next" href="wsolve.html#wsolve" title="wsolve">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Additional documentation for the optim package for Octave.

Copyright (C) <Olaf Till <i7tiol@t-online.de>>

You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.

This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="LinearRegression"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="wsolve.html#wsolve">wsolve</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="polyconf.html#polyconf">polyconf</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Residual-optimization.html#Residual-optimization">Residual optimization</a>
<hr>
</div>

<h3 class="section">2.12 Function LinearRegression</h3>

<p><a name="index-LinearRegression-60"></a>
<!-- LinearRegression ../inst/LinearRegression.m -->
-*- texinfo -*-

<div class="defun">
&mdash; Function File: [<var>p</var>,<var>e_var</var>,<var>r</var>,<var>p_var</var>,<var>y_var</var>] = <b>LinearRegression</b> (<var>F,y</var>)<var><a name="index-LinearRegression-61"></a></var><br>
&mdash; Function File: [<var>p</var>,<var>e_var</var>,<var>r</var>,<var>p_var</var>,<var>y_var</var>] = <b>LinearRegression</b> (<var>F,y,w</var>)<var><a name="index-LinearRegression-62"></a></var><br>
<blockquote><p>

general linear regression

determine the parameters p_j  (j=1,2,...,m) such that the function
f(x) = sum_(i=1,...,m) p_j*f_j(x) is the best fit to the given values y_i = f(x_i)

parameters:  
          <ul>
<li><var>F</var> is an n*m matrix with the values of the basis functions at
the support points. In column j give the values of f_j at the points
x_i  (i=1,2,...,n)
<li><var>y</var> is a column vector of length n with the given values
<li><var>w</var> is n column vector of of length n vector with the weights of data points
</ul>
        
return values:
          <ul>
<li><var>p</var> is the vector of length m with the estimated values of the parameters
<li><var>e_var</var> is the estimated variance of the difference between fitted and measured values
<li><var>r</var> is the weighted norm of the residual
<li><var>p_var</var> is the estimated variance of the parameters p_j
<li><var>y_var</var> is the estimated variance of the dependend variables
</ul>
        
 Caution:  
 do NOT request <var>y_var</var> for large data sets, as a n by n matrix is
 generated

<!-- Will be cut out in optims info file and replaced with the same -->
<!-- refernces explicitely there, since references to core Octave -->
<!-- functions are not automatically transformed from here to there. -->
</p></blockquote></div>

   <p>See also <a href="../octave/XREFregress.html#XREFregress">regress</a>, <a href="XREFleasqr.html#XREFleasqr">leasqr</a>,
<a href="XREFnonlin_005fcurvefit.html#XREFnonlin_005fcurvefit">nonlin_curvefit</a>,
<a href="../octave/XREFpolyfit.html#XREFpolyfit">polyfit</a>, <a href="XREFwpolyfit.html#XREFwpolyfit">wpolyfit</a>,
<a href="XREFexpfit.html#XREFexpfit">expfit</a>.

<!--  -->
   </body></html>