1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
<html lang="en">
<head>
<title>mdsmax - optim_doc</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="optim_doc">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Scalar-optimization.html#Scalar-optimization" title="Scalar optimization">
<link rel="prev" href="nmsmax.html#nmsmax" title="nmsmax">
<link rel="next" href="adsmax.html#adsmax" title="adsmax">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Additional documentation for the optim package for Octave.
Copyright (C) <Olaf Till <i7tiol@t-online.de>>
You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<a name="mdsmax"></a>
<p>
Next: <a rel="next" accesskey="n" href="adsmax.html#adsmax">adsmax</a>,
Previous: <a rel="previous" accesskey="p" href="nmsmax.html#nmsmax">nmsmax</a>,
Up: <a rel="up" accesskey="u" href="Scalar-optimization.html#Scalar-optimization">Scalar optimization</a>
<hr>
</div>
<h3 class="section">1.8 A multidirectional search algorithm</h3>
<p><a name="index-mdsmax-12"></a>
<h4 class="subheading">Helptext:</h4>
<p><a name="XREFmdsmax"></a>
<pre class="verbatim">MDSMAX Multidirectional search method for direct search optimization.
[x, fmax, nf] = MDSMAX(FUN, x0, STOPIT, SAVIT) attempts to
maximize the function FUN, using the starting vector x0.
The method of multidirectional search is used.
Output arguments:
x = vector yielding largest function value found,
fmax = function value at x,
nf = number of function evaluations.
The iteration is terminated when either
- the relative size of the simplex is <= STOPIT(1)
(default 1e-3),
- STOPIT(2) function evaluations have been performed
(default inf, i.e., no limit), or
- a function value equals or exceeds STOPIT(3)
(default inf, i.e., no test on function values).
The form of the initial simplex is determined by STOPIT(4):
STOPIT(4) = 0: regular simplex (sides of equal length, the default),
STOPIT(4) = 1: right-angled simplex.
Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
If a non-empty fourth parameter string SAVIT is present, then
`SAVE SAVIT x fmax nf' is executed after each inner iteration.
NB: x0 can be a matrix. In the output argument, in SAVIT saves,
and in function calls, x has the same shape as x0.
MDSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
arguments to be passed to fun, via feval(fun,x,P1,P2,...).
This implementation uses 2n^2 elements of storage (two simplices), where x0
is an n-vector. It is based on the algorithm statement in [2, sec.3],
modified so as to halve the storage (with a slight loss in readability).
References:
[1] V. J. Torczon, Multi-directional search: A direct search algorithm for
parallel machines, Ph.D. Thesis, Rice University, Houston, Texas, 1989.
[2] V. J. Torczon, On the convergence of the multidirectional search
algorithm, SIAM J. Optimization, 1 (1991), pp. 123-145.
[3] N. J. Higham, Optimization by direct search in matrix computations,
SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
[4] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
Second edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2002; sec. 20.5.
</pre>
<!-- -->
</body></html>
|