File: wpolyfit.html

package info (click to toggle)
octave-optim 1.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,064 kB
  • ctags: 374
  • sloc: cpp: 1,126; perl: 158; makefile: 79
file content (147 lines) | stat: -rw-r--r-- 6,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
<html lang="en">
<head>
<title>wpolyfit - optim_doc</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="optim_doc">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Residual-optimization.html#Residual-optimization" title="Residual optimization">
<link rel="prev" href="polyfitinf.html#polyfitinf" title="polyfitinf">
<link rel="next" href="polyconf.html#polyconf" title="polyconf">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Additional documentation for the optim package for Octave.

Copyright (C) <Olaf Till <i7tiol@t-online.de>>

You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.

This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="wpolyfit"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="polyconf.html#polyconf">polyconf</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="polyfitinf.html#polyfitinf">polyfitinf</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Residual-optimization.html#Residual-optimization">Residual optimization</a>
<hr>
</div>

<h3 class="section">2.10 Polynomial fitting suitable for polyconf</h3>

<p><a name="index-wpolyfit-54"></a>
<!-- wpolyfit ../inst/wpolyfit.m -->
<a name="XREFwpolyfit"></a>

<div class="defun">
&mdash; Function File: [<var>p</var>, <var>s</var>] = <b>wpolyfit</b> (<var>x, y, dy, n</var>)<var><a name="index-wpolyfit-55"></a></var><br>
<blockquote><p>Return the coefficients of a polynomial <var>p</var>(<var>x</var>) of degree
<var>n</var> that minimizes
<!-- ######################################################## -->
<!-- These lines must be written without space at start to work around -->
<!-- a bug in html generation. -->
<code>sumsq (p(x(i)) - y(i))</code>,
<!-- ######################################################## -->
to best fit the data in the least squares sense.  The standard error
on the observations <var>y</var> if present are given in <var>dy</var>.

        <p>The returned value <var>p</var> contains the polynomial coefficients
suitable for use in the function polyval.  The structure <var>s</var> returns
information necessary to compute uncertainty in the model.

        <p>To compute the predicted values of y with uncertainty use
     <pre class="example">          [y,dy] = polyconf(p,x,s,'ci');
</pre>
        <p>You can see the effects of different confidence intervals and
prediction intervals by calling the wpolyfit internal plot
function with your fit:
     <pre class="example">          feval('wpolyfit:plt',x,y,dy,p,s,0.05,'pi')
</pre>
        <p>Use <var>dy</var>=[] if uncertainty is unknown.

        <p>You can use a chi^2 test to reject the polynomial fit:
     <pre class="example">          p = 1-chi2cdf(s.normr^2,s.df);
</pre>
        <p>p is the probability of seeing a chi^2 value higher than that which
was observed assuming the data are normally distributed around the fit. 
If p &lt; 0.01, you can reject the fit at the 1% level.

        <p>You can use an F test to determine if a higher order polynomial
improves the fit:
     <pre class="example">          [poly1,S1] = wpolyfit(x,y,dy,n);
          [poly2,S2] = wpolyfit(x,y,dy,n+1);
          F = (S1.normr^2 - S2.normr^2)/(S1.df-S2.df)/(S2.normr^2/S2.df);
          p = 1-f_cdf(F,S1.df-S2.df,S2.df);
</pre>
        <p>p is the probability of observing the improvement in chi^2 obtained
by adding the extra parameter to the fit.  If p &lt; 0.01, you can reject
the lower order polynomial at the 1% level.

        <p>You can estimate the uncertainty in the polynomial coefficients
themselves using
     <pre class="example">          dp = sqrt(sumsq(inv(s.R'))'/s.df)*s.normr;
</pre>
        <p>but the high degree of covariance amongst them makes this a questionable
operation.

   &mdash; Function File: [<var>p</var>, <var>s</var>, <var>mu</var>] = <b>wpolyfit</b> (<var>...</var>)<var><a name="index-wpolyfit-56"></a></var><br>
<blockquote>
        <p>If an additional output <code>mu = [mean(x),std(x)]</code> is requested then
the <var>x</var> values are centered and normalized prior to computing the fit. 
This will give more stable numerical results.  To compute a predicted
<var>y</var> from the returned model use
<code>y = polyval(p, (x-mu(1))/mu(2)</code>

   &mdash; Function File:  <b>wpolyfit</b> (<var>...</var>)<var><a name="index-wpolyfit-57"></a></var><br>
<blockquote>
        <p>If no output arguments are requested, then wpolyfit plots the data,
the fitted line and polynomials defining the standard error range.

        <p>Example
     <pre class="example">          x = linspace(0,4,20);
          dy = (1+rand(size(x)))/2;
          y = polyval([2,3,1],x) + dy.*randn(size(x));
          wpolyfit(x,y,dy,2);
</pre>
        &mdash; Function File:  <b>wpolyfit</b> (<var>..., 'origin'</var>)<var><a name="index-wpolyfit-58"></a></var><br>
<blockquote>
        <p>If 'origin' is specified, then the fitted polynomial will go through
the origin.  This is generally ill-advised.  Use with caution.

        <p>Hocking, RR (2003). Methods and Applications of Linear Models. 
New Jersey: John Wiley and Sons, Inc.

     <!-- Will be cut out in optims info file and replaced with the same -->
     <!-- refernces explicitely there, since references to core Octave -->
     <!-- functions are not automatically transformed from here to there. -->
     <p class="noindent"><strong>See also:</strong> <a href="XREFpolyconf.html#XREFpolyconf">polyconf</a>.

        </blockquote></div>

   <p>See also <a href="../octave/XREFpolyfit.html#XREFpolyfit">polyfit</a>.

<!--  -->
   </body></html>