File: de_005fmin.html

package info (click to toggle)
octave-optim 1.6.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 2,460 kB
  • sloc: cpp: 1,047; makefile: 216; perl: 169; xml: 29; sh: 3
file content (195 lines) | stat: -rw-r--r-- 8,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Additional documentation for the optim package for Octave.

Copyright (C) Olaf Till <i7tiol@t-online.de>

You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.

This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>de_min (optim_doc)</title>

<meta name="description" content="de_min (optim_doc)">
<meta name="keywords" content="de_min (optim_doc)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-index.html#Function-index" rel="index" title="Function index">
<link href="Scalar-optimization.html#Scalar-optimization" rel="up" title="Scalar optimization">
<link href="battery.html#battery" rel="next" title="battery">
<link href="line_005fmin.html#line_005fmin" rel="prev" title="line_min">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en">
<a name="de_005fmin"></a>
<div class="header">
<p>
Next: <a href="battery.html#battery" accesskey="n" rel="next">battery</a>, Previous: <a href="line_005fmin.html#line_005fmin" accesskey="p" rel="prev">line_min</a>, Up: <a href="Scalar-optimization.html#Scalar-optimization" accesskey="u" rel="up">Scalar optimization</a> &nbsp; [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="A-differential-evolution-_0028stochastic_0029-optimizer"></a>
<h3 class="section">1.16 A differential evolution (stochastic) optimizer</h3>
<a name="index-de_005fmin"></a>

<a name="Helptext_003a-5"></a>
<h4 class="subheading">Helptext:</h4>

<a name="XREFde_005fmin"></a><pre class="verbatim">de_min: global optimisation using differential evolution

Usage: [x, obj_value, nfeval, convergence] = de_min(fcn, control)

minimization of a user-supplied function with respect to x(1:D),
using the differential evolution (DE) method based on an algorithm
by  Rainer Storn (http://www.icsi.berkeley.edu/~storn/code.html)
See: http://www.softcomputing.net/tevc2009_1.pdf


Arguments:  
---------------
fcn        string : Name of function. Must return a real value
control    vector : (Optional) Control variables, described below
        or struct

Returned values:
----------------
x          vector : parameter vector of best solution
obj_value  scalar : objective function value of best solution
nfeval     scalar : number of function evaluations
convergence       : 1 = best below value to reach (VTR)
                    0 = population has reached defined quality (tol)
                   -1 = some values are close to constraints/boundaries
                   -2 = max number of iterations reached (maxiter)
                   -3 = max number of functions evaluations reached (maxnfe)

Control variable:   (optional) may be named arguments (i.e. &quot;name&quot;,value
----------------    pairs), a struct, or a vector, where
                    NaN's are ignored.

XVmin        : vector of lower bounds of initial population
               *** note: by default these are no constraints ***
XVmax        : vector of upper bounds of initial population
constr       : 1 -&gt; enforce the bounds not just for the initial population
const        : data vector (remains fixed during the minimization)
NP           : number of population members
F            : difference factor from interval [0, 2]
CR           : crossover probability constant from interval [0, 1]
strategy     : 1 --&gt; DE/best/1/exp           7 --&gt; DE/best/1/bin
               2 --&gt; DE/rand/1/exp           8 --&gt; DE/rand/1/bin
               3 --&gt; DE/target-to-best/1/exp 9 --&gt; DE/target-to-best/1/bin
               4 --&gt; DE/best/2/exp           10--&gt; DE/best/2/bin
               5 --&gt; DE/rand/2/exp           11--&gt; DE/rand/2/bin
               6 --&gt; DEGL/SAW/exp            else  DEGL/SAW/bin
refresh      : intermediate output will be produced after &quot;refresh&quot;
               iterations. No intermediate output will be produced
               if refresh is &lt; 1
VTR          : Stopping criterion: &quot;Value To Reach&quot;
               de_min will stop when obj_value &lt;= VTR.
               Use this if you know which value you expect.
tol          : Stopping criterion: &quot;tolerance&quot;
               stops if (best-worst)/max(1,worst) &lt; tol
               This stops basically if the whole population is &quot;good&quot;.
maxnfe       : maximum number of function evaluations
maxiter      : maximum number of iterations (generations)

      The algorithm seems to work well only if [XVmin,XVmax] covers the 
      region where the global minimum is expected.
      DE is also somewhat sensitive to the choice of the
      difference factor F. A good initial guess is to choose F from
      interval [0.5, 1], e.g. 0.8.
      CR, the crossover probability constant from interval [0, 1]
      helps to maintain the diversity of the population and is
      rather uncritical but affects strongly the convergence speed.
      If the parameters are correlated, high values of CR work better.
      The reverse is true for no correlation.
      Experiments suggest that /bin likes to have a slightly
      larger CR than /exp.
      The number of population members NP is also not very critical. A
      good initial guess is 10*D. Depending on the difficulty of the
      problem NP can be lower than 10*D or must be higher than 10*D
      to achieve convergence.

Default Values:
---------------
XVmin = [-2];
XVmax = [ 2];
constr= 0;
const = [];
NP    = 10 *D
F     = 0.8;
CR    = 0.9;
strategy = 12;
refresh  = 0;
VTR   = -Inf;
tol   = 1.e-3;
maxnfe  = 1e6;
maxiter = 1000;


Example to find the minimum of the Rosenbrock saddle:
----------------------------------------------------
Define f as:
                   function result = f(x);
                     result = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
                   end
Then type:

	ctl.XVmin = [-2 -2];
	ctl.XVmax = [ 2  2];
	[x, obj_value, nfeval, convergence] = de_min (@f, ctl);

Keywords: global-optimisation optimisation minimisation

</pre>

<hr>
<div class="header">
<p>
Next: <a href="battery.html#battery" accesskey="n" rel="next">battery</a>, Previous: <a href="line_005fmin.html#line_005fmin" accesskey="p" rel="prev">line_min</a>, Up: <a href="Scalar-optimization.html#Scalar-optimization" accesskey="u" rel="up">Scalar optimization</a> &nbsp; [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>