1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Additional documentation for the optim package for Octave.
Copyright (C) Olaf Till <i7tiol@t-online.de>
You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>wpolyfit (optim_doc)</title>
<meta name="description" content="wpolyfit (optim_doc)">
<meta name="keywords" content="wpolyfit (optim_doc)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-index.html#Function-index" rel="index" title="Function index">
<link href="Residual-optimization.html#Residual-optimization" rel="up" title="Residual optimization">
<link href="polyconf.html#polyconf" rel="next" title="polyconf">
<link href="polyfitinf.html#polyfitinf" rel="prev" title="polyfitinf">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="wpolyfit"></a>
<div class="header">
<p>
Next: <a href="polyconf.html#polyconf" accesskey="n" rel="next">polyconf</a>, Previous: <a href="polyfitinf.html#polyfitinf" accesskey="p" rel="prev">polyfitinf</a>, Up: <a href="Residual-optimization.html#Residual-optimization" accesskey="u" rel="up">Residual optimization</a> [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Polynomial-fitting-suitable-for-polyconf"></a>
<h3 class="section">2.11 Polynomial fitting suitable for polyconf</h3>
<a name="index-wpolyfit-4"></a>
<a name="XREFwpolyfit"></a><dl>
<dt><a name="index-wpolyfit"></a>Function File: <em>[<var>p</var>, <var>s</var>] =</em> <strong>wpolyfit</strong> <em>(<var>x</var>, <var>y</var>, <var>dy</var>, <var>n</var>)</em></dt>
<dd><p>Return the coefficients of a polynomial <var>p</var>(<var>x</var>) of degree
<var>n</var> that minimizes
<code>sumsq (p(x(i)) - y(i))</code>,
to best fit the data in the least squares sense. The standard error
on the observations <var>y</var> if present are given in <var>dy</var>.
</p>
<p>The returned value <var>p</var> contains the polynomial coefficients
suitable for use in the function polyval. The structure <var>s</var> returns
information necessary to compute uncertainty in the model.
</p>
<p>To compute the predicted values of y with uncertainty use
</p><div class="example">
<pre class="example">[y,dy] = polyconf(p,x,s,'ci');
</pre></div>
<p>You can see the effects of different confidence intervals and
prediction intervals by calling the wpolyfit internal plot
function with your fit:
</p><div class="example">
<pre class="example">feval('wpolyfit:plt',x,y,dy,p,s,0.05,'pi')
</pre></div>
<p>Use <var>dy</var>=[] if uncertainty is unknown.
</p>
<p>You can use a chi^2 test to reject the polynomial fit:
</p><div class="example">
<pre class="example">p = 1-chi2cdf(s.normr^2,s.df);
</pre></div>
<p>p is the probability of seeing a chi^2 value higher than that which
was observed assuming the data are normally distributed around the fit.
If p < 0.01, you can reject the fit at the 1% level.
</p>
<p>You can use an F test to determine if a higher order polynomial
improves the fit:
</p><div class="example">
<pre class="example">[poly1,S1] = wpolyfit(x,y,dy,n);
[poly2,S2] = wpolyfit(x,y,dy,n+1);
F = (S1.normr^2 - S2.normr^2)/(S1.df-S2.df)/(S2.normr^2/S2.df);
p = 1-f_cdf(F,S1.df-S2.df,S2.df);
</pre></div>
<p>p is the probability of observing the improvement in chi^2 obtained
by adding the extra parameter to the fit. If p < 0.01, you can reject
the lower order polynomial at the 1% level.
</p>
<p>You can estimate the uncertainty in the polynomial coefficients
themselves using
</p><div class="example">
<pre class="example">dp = sqrt(sumsq(inv(s.R'))'/s.df)*s.normr;
</pre></div>
<p>but the high degree of covariance amongst them makes this a questionable
operation.
</p></dd></dl>
<dl>
<dt><a name="index-wpolyfit-1"></a>Function File: <em>[<var>p</var>, <var>s</var>, <var>mu</var>] =</em> <strong>wpolyfit</strong> <em>(...)</em></dt>
<dd>
<p>If an additional output <code>mu = [mean(x),std(x)]</code> is requested then
the <var>x</var> values are centered and normalized prior to computing the fit.
This will give more stable numerical results. To compute a predicted
<var>y</var> from the returned model use
<code>y = polyval(p, (x-mu(1))/mu(2)</code>
</p></dd></dl>
<dl>
<dt><a name="index-wpolyfit-2"></a>Function File: <em></em> <strong>wpolyfit</strong> <em>(...)</em></dt>
<dd>
<p>If no output arguments are requested, then wpolyfit plots the data,
the fitted line and polynomials defining the standard error range.
</p>
<p>Example
</p><div class="example">
<pre class="example">x = linspace(0,4,20);
dy = (1+rand(size(x)))/2;
y = polyval([2,3,1],x) + dy.*randn(size(x));
wpolyfit(x,y,dy,2);
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-wpolyfit-3"></a>Function File: <em></em> <strong>wpolyfit</strong> <em>(..., 'origin')</em></dt>
<dd>
<p>If ’origin’ is specified, then the fitted polynomial will go through
the origin. This is generally ill-advised. Use with caution.
</p>
<p>Hocking, RR (2003). Methods and Applications of Linear Models.
New Jersey: John Wiley and Sons, Inc.
</p>
<p><strong>See also:</strong> <a href="polyconf.html#XREFpolyconf">polyconf</a>.
</p></dd></dl>
<p>See also <a href="https://www.gnu.org/software/octave/doc/interpreter/XREFpolyfit.html#XREFpolyfit">(octave)polyfit</a>.
</p>
<hr>
<div class="header">
<p>
Next: <a href="polyconf.html#polyconf" accesskey="n" rel="next">polyconf</a>, Previous: <a href="polyfitinf.html#polyfitinf" accesskey="p" rel="prev">polyfitinf</a>, Up: <a href="Residual-optimization.html#Residual-optimization" accesskey="u" rel="up">Residual optimization</a> [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|