1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Additional documentation for the optim package for Octave.
Copyright (C) Olaf Till <i7tiol@t-online.de>
You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>wsolve (optim_doc)</title>
<meta name="description" content="wsolve (optim_doc)">
<meta name="keywords" content="wsolve (optim_doc)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-index.html#Function-index" rel="index" title="Function index">
<link href="Residual-optimization.html#Residual-optimization" rel="up" title="Residual optimization">
<link href="Zero-finders.html#Zero-finders" rel="next" title="Zero finders">
<link href="LinearRegression.html#LinearRegression" rel="prev" title="LinearRegression">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="wsolve"></a>
<div class="header">
<p>
Previous: <a href="LinearRegression.html#LinearRegression" accesskey="p" rel="prev">LinearRegression</a>, Up: <a href="Residual-optimization.html#Residual-optimization" accesskey="u" rel="up">Residual optimization</a> [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Function-wsolve_002c-another-linear-solver"></a>
<h3 class="section">2.14 Function wsolve, another linear solver</h3>
<a name="index-wsolve"></a>
<a name="Helptext_003a-10"></a>
<h4 class="subheading">Helptext:</h4>
<a name="XREFwsolve"></a><pre class="verbatim">[x,s] = wsolve(A,y,dy)
Solve a potentially over-determined system with uncertainty in
the values.
A x = y +/- dy
Use QR decomposition for increased accuracy. Estimate the
uncertainty for the solution from the scatter in the data.
The returned structure s contains
normr = sqrt( A x - y ), weighted by dy
R such that R'R = A'A
df = n-p, n = rows of A, p = columns of A
See polyconf for details on how to use s to compute dy.
The covariance matrix is inv(R'*R). If you know that the
parameters are independent, then uncertainty is given by
the diagonal of the covariance matrix, or
dx = sqrt(N*sumsq(inv(s.R'))')
where N = normr^2/df, or N = 1 if df = 0.
Example 1: weighted system
A=[1,2,3;2,1,3;1,1,1]; xin=[1;2;3];
dy=[0.2;0.01;0.1]; y=A*xin+randn(size(dy)).*dy;
[x,s] = wsolve(A,y,dy);
dx = sqrt(sumsq(inv(s.R'))');
res = [xin, x, dx]
Example 2: weighted overdetermined system y = x1 + 2*x2 + 3*x3 + e
A = fullfact([3,3,3]); xin=[1;2;3];
y = A*xin; dy = rand(size(y))/50; y+=dy.*randn(size(y));
[x,s] = wsolve(A,y,dy);
dx = s.normr*sqrt(sumsq(inv(s.R'))'/s.df);
res = [xin, x, dx]
Note there is a counter-intuitive result that scaling the
uncertainty in the data does not affect the uncertainty in
the fit. Indeed, if you perform a monte carlo simulation
with x,y datasets selected from a normal distribution centered
on y with width 10*dy instead of dy you will see that the
variance in the parameters indeed increases by a factor of 100.
However, if the error bars really do increase by a factor of 10
you should expect a corresponding increase in the scatter of
the data, which will increase the variance computed by the fit.
</pre>
</body>
</html>
|