1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
## Copyright (C) 2006-2018 Alexander Barth <barth.alexander@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Loadable Function} {[@var{fi},@var{vari}] = } optiminterp2(@var{x},@var{y},@var{f},@var{var},@var{lenx},@var{leny},@var{m},@var{xi},@var{yi})
## Performs a local 2D-optimal interpolation (objective analysis).
##
## Every elements in @var{f} corresponds to a data point (observation)
## at location @var{x},@var{y} with the error variance @var{var}.
##
## @var{lenx} and @var{leny} are correlation length in x-direction
## and y-direction respectively.
## @var{m} represents the number of influential points.
##
## @var{xi} and @var{yi} are the data points where the field is
## interpolated. @var{fi} is the interpolated field and @var{vari} is
## its error variance.
##
## The background field of the optimal interpolation is zero.
## For a different background field, the background field
## must be subtracted from the observation, the difference
## is mapped by OI onto the background grid and finally the
## background is added back to the interpolated field.
## The error variance of the background field is assumed to
## have a error variance of one.
## @end deftypefn
function [fi,vari] = optiminterp2(x,y,f,var,lenx,leny,m,xi,yi)
[fi,vari] = optiminterpn(x,y,f,var,lenx,leny,m,xi,yi);
endfunction
%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%! fi_ref = sin( xi*6 ) .* cos( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,20));
%! x = x(:);
%! y = y(:);
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f = sin( x*6 ) .* cos( y*6);
%!
%! m = 30;
%!
%! [fi,vari] = optiminterp2(x,y,f,var,0.1,0.1,m,xi,yi);
%!
%! rms = sqrt(mean((fi_ref(:) - fi(:)).^2));
%!
%! assert (rms <= 0.005, "unexpected large difference with reference field");
%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%!
%! fi_ref(:,:,1) = sin( xi*6 ) .* cos( yi*6);
%! fi_ref(:,:,2) = cos( xi*6 ) .* sin( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,20));
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f(:,:,1) = sin( x*6 ) .* cos( y*6);
%! f(:,:,2) = cos( x*6 ) .* sin( y*6);
%!
%! m = 30;
%!
%! [fi,vari] = optiminterp2(x,y,f,var,0.1,0.1,m,xi,yi);
%!
%! rms = sqrt(mean((fi_ref(:) - fi(:)).^2));
%!
%! assert (rms <= 0.005, "unexpected large difference with reference field");
%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%! fi_ref = sin( xi*6 ) .* cos( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,6));
%! x = x(:);
%! y = y(:);
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f = sin( x*6 ) .* cos( y*6);
%!
%! len = 0.1;
%! m = min(30,on);
%!
%! # covariance function
%! # gaussian
%! bcovar2 = @(d2) exp(-d2/len^2) ;
%! # diva
%! #bcovar2 = @(d2) max(sqrt(d2)/len,eps) .* besselk(1,max(sqrt(d2)/len,eps));
%!
%! # P: covariance between grid points (xi,yi) and grid points (xi,yi)
%! P = zeros(numel(xi),numel(xi));
%!
%! for j=1:numel(xi)
%! for i=1:numel(xi)
%! P(i,j) = (xi(i) - xi(j))^2 + (yi(i) - yi(j))^2;
%! end
%! end
%! P = bcovar2(P);
%!
%! # HPH: covariance between observation points (x,y) and observation points (x,y)
%! HPH = zeros(numel(x),numel(x));
%!
%! for j=1:numel(x)
%! for i=1:numel(x)
%! HPH(i,j) = (x(i) - x(j))^2 + (y(i) - y(j))^2;
%! end
%! end
%! HPH = bcovar2(HPH);
%!
%! # PH: covariance between grid points (xi,yi) and observation points (x,y)
%! PH = zeros(numel(xi),numel(x));
%!
%! for j=1:numel(x)
%! for i=1:numel(xi)
%! PH(i,j) = (xi(i) - x(j))^2 + (yi(i) - y(j))^2;
%! end
%! end
%! PH = bcovar2(PH);
%!
%! R = diag(var);
%!
%! # call optiminterp
%! [fi,vari] = optiminterp2(x,y,f,var,len,len,m,xi,yi);
%!
%! # Kalman gain
%! K = PH * inv(HPH + R);
%!
%! # analysis
%! fi2 = K * f;
%!
%! # error field
%! vari2 = diag(P - K * PH');
%!
%! # transform vectors into 2d-arrays
%! fi2 = reshape(fi2,size(fi));
%! vari2 = reshape(vari2,size(fi));
%!
%! rms = sqrt(mean((fi2(:) - fi(:)).^2));
%!
%! assert (rms <= 1e-4, "unexpected large RMS difference (analysis)");
%!
%! rms = sqrt(mean((vari2(:) - vari(:)).^2));
%!
%! assert (rms <= 1e-4, "unexpected large RMS difference (error field)");
|