File: optiminterp2.m

package info (click to toggle)
octave-optiminterp 0.3.7-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 360 kB
  • sloc: f90: 299; makefile: 168; cpp: 95; sh: 2
file content (168 lines) | stat: -rw-r--r-- 4,860 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
## Copyright (C) 2006-2018 Alexander Barth <barth.alexander@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Loadable Function} {[@var{fi},@var{vari}] = } optiminterp2(@var{x},@var{y},@var{f},@var{var},@var{lenx},@var{leny},@var{m},@var{xi},@var{yi})
## Performs a local 2D-optimal interpolation (objective analysis).
##
## Every elements in @var{f} corresponds to a data point (observation)
## at location @var{x},@var{y} with the error variance @var{var}.
##
## @var{lenx} and @var{leny} are correlation length in x-direction
## and y-direction respectively. 
## @var{m} represents the number of influential points.
##
## @var{xi} and @var{yi} are the data points where the field is
## interpolated. @var{fi} is the interpolated field and @var{vari} is 
## its error variance.
##
## The background field of the optimal interpolation is zero.
## For a different background field, the background field
## must be subtracted from the observation, the difference 
## is mapped by OI onto the background grid and finally the
## background is added back to the interpolated field.
## The error variance of the background field is assumed to 
## have a error variance of one.
## @end deftypefn

function [fi,vari] = optiminterp2(x,y,f,var,lenx,leny,m,xi,yi)

  [fi,vari] = optiminterpn(x,y,f,var,lenx,leny,m,xi,yi);

endfunction

%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%! fi_ref = sin( xi*6 ) .* cos( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,20));
%! x = x(:);
%! y = y(:);
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f = sin( x*6 ) .* cos( y*6);
%!
%! m = 30;
%!
%! [fi,vari] = optiminterp2(x,y,f,var,0.1,0.1,m,xi,yi);
%!
%! rms = sqrt(mean((fi_ref(:) - fi(:)).^2));
%!
%! assert (rms <= 0.005, "unexpected large difference with reference field");

%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%!
%! fi_ref(:,:,1) = sin( xi*6 ) .* cos( yi*6);
%! fi_ref(:,:,2) = cos( xi*6 ) .* sin( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,20));
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f(:,:,1) = sin( x*6 ) .* cos( y*6);
%! f(:,:,2) = cos( x*6 ) .* sin( y*6);
%!
%! m = 30;
%!
%! [fi,vari] = optiminterp2(x,y,f,var,0.1,0.1,m,xi,yi);
%!
%! rms = sqrt(mean((fi_ref(:) - fi(:)).^2));
%!
%! assert (rms <= 0.005, "unexpected large difference with reference field");

%!test
%! # grid of background field
%! [xi,yi] = ndgrid(linspace(0,1,30));
%! fi_ref = sin( xi*6 ) .* cos( yi*6);
%!
%! # grid of observations
%! [x,y] = ndgrid(linspace(0,1,6));
%! x = x(:);
%! y = y(:);
%!
%! on = numel(x);
%! var = 0.01 * ones(on,1);
%! f = sin( x*6 ) .* cos( y*6);
%!
%! len = 0.1;
%! m = min(30,on);
%!
%! # covariance function
%! # gaussian
%! bcovar2 = @(d2) exp(-d2/len^2) ;
%! # diva
%! #bcovar2 = @(d2) max(sqrt(d2)/len,eps) .* besselk(1,max(sqrt(d2)/len,eps));
%!
%! # P: covariance between grid points (xi,yi) and grid points (xi,yi)
%! P = zeros(numel(xi),numel(xi));
%!
%! for j=1:numel(xi)
%!   for i=1:numel(xi) 
%!     P(i,j) = (xi(i) - xi(j))^2 + (yi(i) - yi(j))^2;
%!   end
%! end
%! P = bcovar2(P);
%!
%! # HPH: covariance between observation points (x,y) and observation points (x,y)
%! HPH = zeros(numel(x),numel(x));
%!
%! for j=1:numel(x)
%!   for i=1:numel(x)
%!     HPH(i,j) = (x(i) - x(j))^2 + (y(i) - y(j))^2;
%!   end
%! end
%! HPH = bcovar2(HPH);
%!
%! # PH: covariance between grid points (xi,yi) and observation points (x,y)
%! PH = zeros(numel(xi),numel(x));
%!
%! for j=1:numel(x)
%!   for i=1:numel(xi) 
%!     PH(i,j) = (xi(i) - x(j))^2 + (yi(i) - y(j))^2;
%!   end
%! end
%! PH = bcovar2(PH);
%!
%! R = diag(var);
%!
%! # call optiminterp
%! [fi,vari] = optiminterp2(x,y,f,var,len,len,m,xi,yi);
%!
%! # Kalman gain
%! K = PH * inv(HPH + R);
%!
%! # analysis
%! fi2 = K * f;
%!
%! # error field
%! vari2 = diag(P - K * PH');
%!
%! # transform vectors into 2d-arrays
%! fi2 = reshape(fi2,size(fi));
%! vari2 = reshape(vari2,size(fi));
%!
%! rms = sqrt(mean((fi2(:) - fi(:)).^2));
%!
%! assert (rms <= 1e-4, "unexpected large RMS difference (analysis)");
%!
%! rms = sqrt(mean((vari2(:) - vari(:)).^2));
%!
%! assert (rms <= 1e-4, "unexpected large RMS difference (error field)");