1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
@chapter Quaternion Constructors
@section quaternion
@findex quaternion
@deftypefn {Function File} {@var{q} =} quaternion (@var{w})
@deftypefnx {Function File} {@var{q} =} quaternion (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {@var{q} =} quaternion (@var{w}, @var{x}, @var{y}, @var{z})
Constructor for quaternions - create or convert to quaternion.
@example
q = w + x*i + y*j + z*k
@end example
Arguments @var{w}, @var{x}, @var{y} and @var{z} can be scalars,
matrices or n-dimensional arrays, but they must be real-valued
and of equal size.
If scalar part @var{w} or components @var{x}, @var{y} and @var{z}
of the vector part are not specified, zero matrices of appropriate
size are assumed.
@strong{Example}
@example
@group
octave:1> q = quaternion (2)
q = 2 + 0i + 0j + 0k
octave:2> q = quaternion (3, 4, 5)
q = 0 + 3i + 4j + 5k
octave:3> q = quaternion (2, 3, 4, 5)
q = 2 + 3i + 4j + 5k
@end group
@end example
@example
@group
octave:4> w = [2, 6, 10; 14, 18, 22];
octave:5> x = [3, 7, 11; 15, 19, 23];
octave:6> y = [4, 8, 12; 16, 20, 24];
octave:7> z = [5, 9, 13; 17, 21, 25];
octave:8> q = quaternion (w, x, y, z)
q.w =
2 6 10
14 18 22
q.x =
3 7 11
15 19 23
q.y =
4 8 12
16 20 24
q.z =
5 9 13
17 21 25
octave:9>
@end group
@end example
@end deftypefn
@section qi
@findex qi
@deftypefn {Function File} {} qi
Create x-component of a quaternion's vector part.
@example
q = w + x*qi + y*qj + z*qk
@end example
@strong{Example}
@example
@group
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
@end group
@end example
@end deftypefn
@section qj
@findex qj
@deftypefn {Function File} {} qj
Create y-component of a quaternion's vector part.
@example
q = w + x*qi + y*qj + z*qk
@end example
@strong{Example}
@example
@group
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
@end group
@end example
@end deftypefn
@section qk
@findex qk
@deftypefn {Function File} {} qk
Create z-component of a quaternion's vector part.
@example
q = w + x*qi + y*qj + z*qk
@end example
@strong{Example}
@example
@group
octave:1> q1 = quaternion (1, 2, 3, 4)
q1 = 1 + 2i + 3j + 4k
octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
q2 = 1 + 2i + 3j + 4k
octave:3>
@end group
@end example
@end deftypefn
@chapter Conversions
@section q2rot
@findex q2rot
@deftypefn {Function File} {[@var{axis}, @var{angle}] =} q2rot (@var{q})
@deftypefnx {Function File} {[@var{axis}, @var{angle}, @var{qn}] =} q2rot (@var{q})
Extract vector/angle form of a unit quaternion @var{q}.
@strong{Inputs}
@table @var
@item q
Unit quaternion describing the rotation.
Quaternion @var{q} can be a scalar or an array.
In the latter case, @var{q} is reshaped to a row vector
and the return values @var{axis} and @var{angle} are
concatenated horizontally, accordingly.
@end table
@strong{Outputs}
@table @var
@item axis
Eigenaxis as a 3-d unit vector @code{[x; y; z]}.
If input argument @var{q} is a quaternion array,
@var{axis} becomes a matrix where
@var{axis(:,i)} corresponds to @var{q(i)}.
@item angle
Rotation angle in radians. The positive direction is
determined by the right-hand rule applied to @var{axis}.
The angle lies in the interval [0, 2*pi].
If input argument @var{q} is a quaternion array,
@var{angle} becomes a row vector where
@var{angle(i)} corresponds to @var{q(i)}.
@item qn
Optional output of diagnostic nature.
@code{qn = reshape (q, 1, [])} or, if needed,
@code{qn = reshape (unit (q), 1, [])}.
@end table
@strong{Example}
@example
@group
octave:1> axis = [0; 0; 1]
axis =
0
0
1
octave:2> angle = pi/4
angle = 0.78540
octave:3> q = rot2q (axis, angle)
q = 0.9239 + 0i + 0j + 0.3827k
octave:4> [vv, th] = q2rot (q)
vv =
0
0
1
th = 0.78540
octave:5> theta = th*180/pi
theta = 45.000
octave:6>
@end group
@end example
@end deftypefn
@section rot2q
@findex rot2q
@deftypefn {Function File} {@var{q} =} rot2q (@var{axis}, @var{angle})
Create unit quaternion @var{q} which describes a rotation of
@var{angle} radians about the vector @var{axis}. This function uses
the active convention where the vector @var{axis} is rotated by @var{angle}
radians. If the coordinate frame should be rotated by @var{angle}
radians, also called the passive convention, this is equivalent
to rotating the @var{axis} by @var{-angle} radians.
@strong{Inputs}
@table @var
@item axis
Vector @code{[x, y, z]} or @code{[x; y; z]} describing the axis of rotation.
@item angle
Rotation angle in radians. The positive direction is
determined by the right-hand rule applied to @var{axis}.
If @var{angle} is a real-valued array, a quaternion array
@var{q} of the same size is returned.
@end table
@strong{Outputs}
@table @var
@item q
Unit quaternion describing the rotation.
If @var{angle} is an array, @var{q(i,j)} corresponds to
the rotation angle @var{angle(i,j)}.
@end table
@strong{Example}
@example
@group
octave:1> axis = [0, 0, 1];
octave:2> angle = pi/4;
octave:3> q = rot2q (axis, angle)
q = 0.9239 + 0i + 0j + 0.3827k
octave:4> v = quaternion (1, 1, 0)
v = 0 + 1i + 1j + 0k
octave:5> vr = q * v * conj (q)
vr = 0 + 0i + 1.414j + 0k
octave:6>
@end group
@end example
@end deftypefn
@section rotm2q
@findex rotm2q
@deftypefn {Function File} {@var{q} =} rotm2q (@var{R})
Convert 3x3 rotation matrix @var{R} to unit quaternion @var{q}.
@end deftypefn
@chapter Quaternion Methods
@section @@quaternion/abs
@findex abs
@deftypefn {Function File} {@var{qabs} =} abs (@var{q})
Modulus of a quaternion.
@example
q = w + x*i + y*j + z*k
abs (q) = sqrt (w.^2 + x.^2 + y.^2 + z.^2)
@end example
@end deftypefn
@section @@quaternion/arg
@findex arg
@deftypefn {Function File} {@var{theta} =} arg (@var{q})
Compute the argument or phase of quaternion @var{q} in radians.
@var{theta} is defined as @code{atan2 (sqrt (q.x.^2 + q.y.^2 + q.z.^2), q.w)}.
The argument @var{theta} lies in the range (0, pi).
@end deftypefn
@section @@quaternion/blkdiag
@findex blkdiag
@deftypefn {Function File} {@var{q} =} blkdiag (@var{q1}, @var{q2}, @dots{})
Block-diagonal concatenation of quaternions.
@end deftypefn
@section @@quaternion/cast
@findex cast
@deftypefn {Function File} {@var{q} =} cast (@var{q}, @var{'type'})
Convert the components of quaternion @var{q} to data type @var{type}.
Valid types are int8, uint8, int16, uint16, int32, uint32, int64,
uint64, double, single and logical.
@end deftypefn
@section @@quaternion/cat
@findex cat
@deftypefn {Function File} {@var{q} =} cat (@var{dim}, @var{q1}, @var{q2}, @dots{})
Concatenation of quaternions along dimension @var{dim}.
@end deftypefn
@section @@quaternion/ceil
@findex ceil
@deftypefn {Function File} {@var{q} =} ceil (@var{q})
Round quaternion @var{q} towards positive infinity.
@end deftypefn
@section @@quaternion/columns
@findex columns
@deftypefn {Function File} {@var{nc} =} columns (@var{q})
Return number of columns @var{nc} of quaternion array @var{q}.
@end deftypefn
@section @@quaternion/conj
@findex conj
@deftypefn {Function File} {@var{q} =} conj (@var{q})
Return conjugate of a quaternion.
@example
q = w + x*i + y*j + z*k
conj (q) = w - x*i - y*j - z*k
@end example
@end deftypefn
@section @@quaternion/cumsum
@findex cumsum
@deftypefn {Function File} {@var{q} =} cumsum (@var{q})
@deftypefnx {Function File} {@var{q} =} cumsum (@var{q}, @var{dim})
@deftypefnx {Function File} {@var{q} =} cumsum (@dots{}, @var{'native'})
@deftypefnx {Function File} {@var{q} =} cumsum (@dots{}, @var{'double'})
@deftypefnx {Function File} {@var{q} =} cumsum (@dots{}, @var{'extra'})
Cumulative sum of elements along dimension @var{dim}. If @var{dim} is omitted,
it defaults to the first non-singleton dimension.
See @code{help cumsum} for more information.
@end deftypefn
@section @@quaternion/diag
@findex diag
@deftypefn {Function File} {@var{q} =} diag (@var{v})
@deftypefnx {Function File} {@var{q} =} diag (@var{v}, @var{k})
Return a diagonal quaternion matrix with quaternion vector V on diagonal K.
The second argument is optional. If it is positive,
the vector is placed on the K-th super-diagonal.
If it is negative, it is placed on the -K-th sub-diagonal.
The default value of K is 0, and the vector is placed
on the main diagonal.
Given a matrix argument, instead of a vector, @command{diag}
extracts the @var{K}-th diagonal of the matrix.
@end deftypefn
@section @@quaternion/diff
@findex diff
@deftypefn {Function File} {@var{qdot} =} diff (@var{q}, @var{omega})
Derivative of a quaternion.
Let Q be a quaternion to transform a vector from a fixed frame to
a rotating frame. If the rotating frame is rotating about the
[x, y, z] axes at angular rates [wx, wy, wz], then the derivative
of Q is given by
@example
Q' = diff(Q, omega)
@end example
If the passive convention is used (rotate the frame, not the vector),
then
@example
Q' = diff(Q,-omega)
@end example
@end deftypefn
@section @@quaternion/exp
@findex exp
@deftypefn {Function File} {@var{qexp} =} exp (@var{q})
Exponential of a quaternion.
@end deftypefn
@section @@quaternion/fix
@findex fix
@deftypefn {Function File} {@var{q} =} fix (@var{q})
Round quaternion @var{q} towards zero.
@end deftypefn
@section @@quaternion/floor
@findex floor
@deftypefn {Function File} {@var{q} =} floor (@var{q})
Round quaternion @var{q} towards negative infinity.
@end deftypefn
@section @@quaternion/full
@findex full
@deftypefn {Function File} {@var{fq} =} full (@var{sq})
Return a full storage quaternion representation @var{fq}
from sparse or diagonal quaternion @var{sq}.
@end deftypefn
@section @@quaternion/get
@findex get
@deftypefn {Function File} {} get (@var{q})
@deftypefnx {Function File} {@var{value} =} get (@var{q}, @var{"key"})
@deftypefnx {Function File} {[@var{val1}, @var{val2}, @dots{}] =} get (@var{q}, @var{"key1"}, @var{"key2"}, @dots{})
Access key values of quaternion objects.
@strong{Keys}
@table @var
@item w
Return scalar part @var{w} of quaternion @var{q} as a built-in type.
@item x, y, z
Return component @var{x}, @var{y} or @var{z} of the vector part of
quaternion @var{q} as a built-in type.
@item s
Return scalar part of quaternion @var{q}. The vector part of @var{q}
is set to zero.
@item v
Return vector part of quaternion @var{q}. The scalar part of @var{q}
is set to zero.
@end table
@end deftypefn
@section @@quaternion/inv
@findex inv
@deftypefn {Function File} {@var{qinv} =} inv (@var{q})
Return inverse of a quaternion.
@end deftypefn
@section @@quaternion/isempty
@findex isempty
@deftypefn {Function File} {@var{bool} =} isempty (@var{q})
Return true if quaternion @var{q} is empty and false otherwise.
@end deftypefn
@section @@quaternion/isfinite
@findex isfinite
@deftypefn {Function File} {@var{bool} =} isfinite (@var{q})
Return a logical array which is true where the elements of
@var{q} are finite values and false where they are not.
@end deftypefn
@section @@quaternion/isinf
@findex isinf
@deftypefn {Function File} {@var{bool} =} isinf (@var{q})
Return a logical array which is true where the elements of
@var{q} are infinite and false where they are not.
@end deftypefn
@section @@quaternion/isnan
@findex isnan
@deftypefn {Function File} {@var{bool} =} isnan (@var{q})
Return a logical array which is true where the elements of
@var{q} are NaN values and false where they are not.
@end deftypefn
@section @@quaternion/ispure
@findex ispure
@deftypefn {Function File} {@var{bool} =} ispure (@var{q})
Return true if scalar part of quaternion is zero, otherwise return false.
@end deftypefn
@section @@quaternion/isreal
@findex isreal
@deftypefn {Function File} {@var{bool} =} isreal (@var{q})
Return true if the vector part of quaternion @var{q} is zero
and false otherwise.
@end deftypefn
@section @@quaternion/length
@findex length
@deftypefn {Function File} {@var{l} =} length (@var{q})
Return the "length" @var{l} of the quaternion array @var{q}.
For quaternion matrices, the length is the number of rows or columns,
whichever is greater (this odd definition is used for compatibility
with @acronym{MATLAB}).
@end deftypefn
@section @@quaternion/log
@findex log
@deftypefn {Function File} {@var{qlog} =} log (@var{q})
Logarithmus naturalis of a quaternion.
@end deftypefn
@section @@quaternion/mean
@findex mean
@deftypefn {Function File} {@var{q} =} mean (@var{q})
@deftypefnx {Function File} {@var{q} =} mean (@var{q}, @var{dim})
@deftypefnx {Function File} {@var{q} =} mean (@var{q}, @var{opt})
@deftypefnx {Function File} {@var{q} =} mean (@var{q}, @var{dim}, @var{opt})
Compute the mean of the elements of the quaternion array @var{q}.
@example
mean (q) = mean (q.w) + mean (q.x)*i + mean (q.y)*j + mean (q.z)*k
@end example
See @code{help mean} for more information and a description of the
parameters @var{dim} and @var{opt}.
@end deftypefn
@section @@quaternion/ndims
@findex ndims
@deftypefn {Function File} {@var{n} =} ndims (@var{q})
Return the number of dimensions of quaternion @var{q}.
For any array, the result will always be larger than or equal to 2.
Trailing singleton dimensions are not counted.
@end deftypefn
@section @@quaternion/norm
@findex norm
@deftypefn {Function File} {@var{n} =} norm (@var{q})
Norm of a quaternion.
@end deftypefn
@section @@quaternion/numel
@findex numel
@deftypefn {Function File} {@var{n} =} numel (@var{q})
@deftypefnx {Function File} {@var{n} =} numel (@var{q}, @var{idx1}, @var{idx2}, @dots{})
For internal use only, use @code{prod(size(q))} or @code{numel (q.w)} instead.
For technical reasons, this method must return the number of elements which are
returned from cs-list indexing, no matter whether it is called with one or more
arguments.
@end deftypefn
@section @@quaternion/repmat
@findex repmat
@deftypefn {Function File} {@var{qret} =} repmat (@var{q}, @var{m})
@deftypefnx {Function File} {@var{qret} =} repmat (@var{q}, @var{m}, @var{n})
@deftypefnx {Function File} {@var{qret} =} repmat (@var{q}, [@var{m} @var{n}])
@deftypefnx {Function File} {@var{qret} =} repmat (@var{q}, [@var{m} @var{n} @var{p} @dots{}])
Form a block quaternion matrix @var{qret} of size @var{m} by @var{n},
with a copy of quaternion matrix @var{q} as each element.
If @var{n} is not specified, form an @var{m} by @var{m} block matrix.
@end deftypefn
@section @@quaternion/reshape
@findex reshape
@deftypefn {Function File} {@var{q} =} reshape (@var{q}, @var{m}, @var{n}, @dots{})
@deftypefnx {Function File} {@var{q} =} reshape (@var{q}, [@var{m} @var{n} @dots{}])
@deftypefnx {Function File} {@var{q} =} reshape (@var{q}, @dots{}, [], @dots{})
@deftypefnx {Function File} {@var{q} =} reshape (@var{q}, @var{size})
Return a quaternion array with the specified dimensions (@var{m}, @var{n}, @dots{})
whose elements are taken from the quaternion array @var{q}. The elements of the
quaternion are accessed in column-major order (like Fortran arrays are stored).
@end deftypefn
@section @@quaternion/round
@findex round
@deftypefn {Function File} {@var{q} =} round (@var{q})
Round the components of quaternion @var{q} towards the nearest integers.
@end deftypefn
@section @@quaternion/rows
@findex rows
@deftypefn {Function File} {@var{nr} =} rows (@var{q})
Return number of rows @var{nr} of quaternion array @var{q}.
@end deftypefn
@section @@quaternion/set
@findex set
@deftypefn {Function File} {} set (@var{q})
@deftypefnx {Function File} {} set (@var{q}, @var{"key"}, @var{value}, @dots{})
@deftypefnx {Function File} {@var{qret} =} set (@var{q}, @var{"key"}, @var{value}, @dots{})
Set or modify properties of quaternion objects.
If no return argument @var{qret} is specified, the modified quaternion object is stored
in input argument @var{q}. @command{set} can handle multiple keys in one call:
@code{set (q, 'key1', val1, 'key2', val2, 'key3', val3)}.
@code{set (q)} prints a list of the object's key names.
@strong{Keys}
@table @var
@item w
Assign real-valued array @var{val} to scalar part @var{w} of quaternion @var{q}.
@item x, y, z
Assign real-valued array @var{val} to component @var{x}, @var{y} or @var{z}
of the vector part of quaternion @var{q}.
@item s
Assign scalar part of quaternion @var{val} to scalar part of quaternion @var{q}.
The vector part of @var{q} is left untouched.
@item v
Assign vector part of quaternion @var{val} to vector part of quaternion @var{q}.
The scalar part of @var{q} is left untouched.
@end table
@end deftypefn
@section @@quaternion/size
@findex size
@deftypefn {Function File} {@var{nvec} =} size (@var{q})
@deftypefnx {Function File} {@var{n} =} size (@var{q}, @var{dim})
@deftypefnx {Function File} {[@var{nx}, @var{ny}, @dots{}] =} size (@var{q})
Return size of quaternion arrays.
@strong{Inputs}
@table @var
@item q
Quaternion object.
@item dim
If given a second argument, @command{size} will return the size of the
corresponding dimension.
@end table
@strong{Outputs}
@table @var
@item nvec
Row vector. The first element is the number of rows and the second
element the number of columns. If @var{q} is an n-dimensional array
of quaternions, the n-th element of @var{nvec} corresponds to the
size of the n-th dimension of @var{q}.
@item n
Scalar value. The size of the dimension @var{dim}.
@item nx
Number of rows.
@item ny
Number of columns.
@item @dots{}
Sizes of the 3rd to n-th dimensions.
@end table
@end deftypefn
@section @@quaternion/size_equal
@findex size_equal
@deftypefn {Function File} {@var{bool} =} size_equal (@var{a}, @var{b}, @dots{})
Return true if quaternions (and matrices) @var{a}, @var{b}, @dots{}
are of equal size and false otherwise.
@end deftypefn
@section @@quaternion/sparse
@findex sparse
@deftypefn {Function File} {@var{sq} =} sparse (@var{fq})
Return a sparse quaternion representation @var{sq} from
full quaternion @var{fq}.
@end deftypefn
@section @@quaternion/squeeze
@findex squeeze
@deftypefn {Function File} {@var{qret} =} squeeze (@var{q})
Remove singleton dimensions from quaternion @var{q} and return the result.
Note that for compatibility with @acronym{MATLAB}, all objects have a minimum
of two dimensions and row vectors are left unchanged.
@end deftypefn
@section @@quaternion/sum
@findex sum
@deftypefn {Function File} {@var{q} =} sum (@var{q})
@deftypefnx {Function File} {@var{q} =} sum (@var{q}, @var{dim})
@deftypefnx {Function File} {@var{q} =} sum (@dots{}, @var{'native'})
@deftypefnx {Function File} {@var{q} =} sum (@dots{}, @var{'double'})
@deftypefnx {Function File} {@var{q} =} sum (@dots{}, @var{'extra'})
Sum of elements along dimension @var{dim}. If @var{dim} is omitted,
it defaults to the first non-singleton dimension.
See @code{help sum} for more information.
@end deftypefn
@section @@quaternion/tril
@findex tril
@deftypefn {Function File} {@var{q} =} tril (@var{q})
@deftypefnx {Function File} {@var{q} =} tril (@var{q}, @var{k})
@deftypefnx {Function File} {@var{q} =} tril (@var{q}, @var{k}, @var{'pack'})
Return a new quaternion matrix formed by extracting the lower
triangular part of the quaternion @var{q}, and setting all
other elements to zero. The second argument @var{k} is optional,
and specifies how many diagonals above or below the main diagonal
should also be included. Default value for @var{k} is zero.
If the option "pack" is given as third argument, the extracted
elements are not inserted into a matrix, but rather stacked
column-wise one above other.
@end deftypefn
@section @@quaternion/triu
@findex triu
@deftypefn {Function File} {@var{q} =} triu (@var{q})
@deftypefnx {Function File} {@var{q} =} triu (@var{q}, @var{k})
@deftypefnx {Function File} {@var{q} =} triu (@var{q}, @var{k}, @var{'pack'})
Return a new quaternion matrix formed by extracting the upper
triangular part of the quaternion @var{q}, and setting all
other elements to zero. The second argument @var{k} is optional,
and specifies how many diagonals above or below the main diagonal
should also be included. Default value for @var{k} is zero.
If the option "pack" is given as third argument, the extracted
elements are not inserted into a matrix, but rather stacked
column-wise one above other.
@end deftypefn
@section @@quaternion/unit
@findex unit
@deftypefn {Function File} {@var{qn} =} unit (@var{q})
Normalize quaternion to length 1 (unit quaternion).
@example
q = w + x*i + y*j + z*k
unit (q) = q ./ sqrt (w.^2 + x.^2 + y.^2 + z.^2)
@end example
@end deftypefn
@chapter Overloaded Quaternion Operators
@section @@quaternion/ctranspose
@findex ctranspose
Conjugate transpose of a quaternion. Used by Octave for "q'".
@section @@quaternion/end
@findex end
End indexing for quaternions.
Used by Octave for "q(1:end)".
@section @@quaternion/eq
@findex eq
Equal to operator for two quaternions. Used by Octave for "q1 == q2".
@section @@quaternion/ge
@findex ge
Greater-than-or-equal-to operator for two quaternions.
Used by Octave for "q1 >= q2".
The ordering is lexicographic.
@section @@quaternion/gt
@findex gt
Greater-than operator for two quaternions.
Used by Octave for "q1 > q2".
The ordering is lexicographic.
@section @@quaternion/horzcat
@findex horzcat
Horizontal concatenation of quaternions. Used by Octave for "[q1, q2]".
@section @@quaternion/ldivide
@findex ldivide
Element-wise left division for quaternions. Used by Octave for "q1 .\ q2".
@section @@quaternion/le
@findex le
Less-than-or-equal-to operator for two quaternions.
Used by Octave for "q1 <= q2".
The ordering is lexicographic.
@section @@quaternion/lt
@findex lt
Less-than operator for two quaternions.
Used by Octave for "q1 < q2".
The ordering is lexicographic.
@section @@quaternion/minus
@findex minus
Subtraction of two quaternions. Used by Octave for "q1 - q2".
@section @@quaternion/mldivide
@findex mldivide
Matrix left division for quaternions. Used by Octave for "q1 \ q2".
@section @@quaternion/mpower
@findex mpower
Matrix power operator of quaternions. Used by Octave for "q^x".
@section @@quaternion/mrdivide
@findex mrdivide
Matrix right division for quaternions. Used by Octave for "q1 / q2".
@section @@quaternion/mtimes
@findex mtimes
Matrix multiplication of two quaternions. Used by Octave for "q1 * q2".
@section @@quaternion/ne
@findex ne
Not-equal-to operator for two quaternions. Used by Octave for "q1 != q2".
@section @@quaternion/plus
@findex plus
Addition of two quaternions. Used by Octave for "q1 + q2".
@section @@quaternion/power
@findex power
Power operator of quaternions. Used by Octave for "q.^x".
Exponent x can be scalar or of appropriate size.
@section @@quaternion/rdivide
@findex rdivide
Element-wise right division for quaternions. Used by Octave for "q1 ./ q2".
@section @@quaternion/subsasgn
@findex subsasgn
Subscripted assignment for quaternions.
Used by Octave for "q.key = value".
@strong{Subscripts}
@table @var
@item q.w
Assign real-valued array @var{val} to scalar part @var{w} of quaternion @var{q}.
@item q.x, q.y, q.z
Assign real-valued array @var{val} to component @var{x}, @var{y} or @var{z}
of the vector part of quaternion @var{q}.
@item q.s
Assign scalar part of quaternion @var{val} to scalar part of quaternion @var{q}.
The vector part of @var{q} is left untouched.
@item q.v
Assign vector part of quaternion @var{val} to vector part of quaternion @var{q}.
The scalar part of @var{q} is left untouched.
@item q(@dots{})
Assign @var{val} to certain elements of quaternion array @var{q}, e.g. @code{q(3, 2:end) = val}.
@end table
@section @@quaternion/subsref
@findex subsref
Subscripted reference for quaternions. Used by Octave for "q.w".
@strong{Subscripts}
@table @var
@item q.w
Return scalar part @var{w} of quaternion @var{q} as a built-in type.
@item q.x, q.y, q.z
Return component @var{x}, @var{y} or @var{z} of the vector part of
quaternion @var{q} as a built-in type.
@item q.s
Return scalar part of quaternion @var{q}. The vector part of @var{q}
is set to zero.
@item q.v
Return vector part of quaternion @var{q}. The scalar part of @var{q}
is set to zero.
@item q(@dots{})
Extract certain elements of quaternion array @var{q}, e.g. @code{q(3, 2:end)}.
@end table
@section @@quaternion/times
@findex times
Element-wise multiplication of two quaternions. Used by Octave for "q1 .* q2".
@section @@quaternion/transpose
@findex transpose
Transpose of a quaternion. Used by Octave for "q.'".
@section @@quaternion/uminus
@findex uminus
Unary minus of a quaternion. Used by Octave for "-q".
@section @@quaternion/uplus
@findex uplus
Unary plus of a quaternion. Used by Octave for "+q".
@section @@quaternion/vertcat
@findex vertcat
Vertical concatenation of quaternions. Used by Octave for "[q1; q2]".
|