1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
|
@c This file has been automatically generated from markovchains.txi
@c by proc.m. Do not edit this file, all changes will be lost
@c -*- texinfo -*-
@c Copyright (C) 2008, 2009, 2010, 2011, 2012, 2014, 2018 Moreno Marzolla
@c
@c This file is part of the queueing package.
@c
@c The queueing package is free software; you can redistribute it
@c and/or modify it under the terms of the GNU General Public License
@c as published by the Free Software Foundation; either version 3 of
@c the License, or (at your option) any later version.
@c
@c The queueing package is distributed in the hope that it will be
@c useful, but WITHOUT ANY WARRANTY; without even the implied warranty
@c of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with the queueing package; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Markov Chains
@chapter Markov Chains
@menu
* Discrete-Time Markov Chains::
* Continuous-Time Markov Chains::
@end menu
@node Discrete-Time Markov Chains
@section Discrete-Time Markov Chains
Let @math{X_0, X_1, @dots{}, X_n, @dots{} } be a sequence of random
variables defined over the discrete state space @math{1, 2,
@dots{}}. The sequence @math{X_0, X_1, @dots{}, X_n, @dots{}} is a
@emph{stochastic process} with discrete time @math{0, 1, 2,
@dots{}}. A @emph{Markov chain} is a stochastic process @math{@{X_n,
n=0, 1, @dots{}@}} which satisfies the following Markov property:
@iftex
@tex
$$\eqalign{P\left(X_{n+1} = x_{n+1}\ |\ X_n = x_n, X_{n-1} = x_{n-1}, \ldots, X_0 = x_0 \right) \cr
& = P\left(X_{n+1} = x_{n+1}\ |\ X_n = x_n\right)}$$
@end tex
@end iftex
@ifnottex
@math{P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, @dots{}, X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)}
@end ifnottex
@noindent which basically means that the probability that the system is in
a particular state at time @math{n+1} only depends on the state the
system was at time @math{n}.
The evolution of a Markov chain with finite state space @math{@{1,
@dots{}, N@}} can be fully described by a stochastic matrix @math{{\bf
P}(n) = [ P_{i,j}(n) ]} where @math{P_{i, j}(n) = P( X_{n+1} = j\
|\ X_n = i )}. If the Markov chain is homogeneous (that is, the
transition probability matrix @math{{\bf P}(n)} is time-independent),
we can write @math{{\bf P} = [P_{i, j}]}, where @math{P_{i, j} = P(
X_{n+1} = j\ |\ X_n = i )} for all @math{n=0, 1, @dots{}}.
@cindex stochastic matrix
The transition probability matrix @math{\bf P} must be a
@emph{stochastic matrix}, meaning that it must satisfy the following
two properties:
@enumerate
@item @math{P_{i, j} @geq{} 0} for all @math{1 @leq{} i, j @leq{} N};
@item @math{\sum_{j=1}^N P_{i,j} = 1} for all @math{i}
@end enumerate
Property 1 requires that all probabilities are nonnegative; property 2
requires that the outgoing transition probabilities from any state
@math{i} sum to one.
@c
@anchor{doc-dtmcchkP}
@deftypefn {Function File} {[@var{r} @var{err}] =} dtmcchkP (@var{P})
@cindex Markov chain, discrete time
@cindex DTMC
@cindex discrete time Markov chain
Check whether @var{P} is a valid transition probability matrix.
If @var{P} is valid, @var{r} is the size (number of rows or columns)
of @var{P}. If @var{P} is not a transition probability matrix,
@var{r} is set to zero, and @var{err} to an appropriate error string.
@end deftypefn
A DTMC is @emph{irreducible} if every state can be reached with
non-zero probability starting from every other state.
@anchor{doc-dtmcisir}
@deftypefn {Function File} {[@var{r} @var{s}] =} dtmcisir (@var{P})
@cindex Markov chain, discrete time
@cindex discrete time Markov chain
@cindex DTMC
@cindex irreducible Markov chain
Check if @var{P} is irreducible, and identify Strongly Connected
Components (SCC) in the transition graph of the DTMC with transition
matrix @var{P}.
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
transition probability from state @math{i} to state @math{j}.
@var{P} must be an @math{N \times N} stochastic matrix.
@end table
@strong{OUTPUTS}
@table @code
@item @var{r}
1 if @var{P} is irreducible (i.e., the state transition graph is
strongly connected), 0 otherwise (scalar)
@item @var{s}(i)
strongly connected component (SCC) that state @math{i} belongs to
(vector of length @math{N}). SCCs are numbered @math{1, 2, @dots{}}.
The number of SCCs is @code{max(s)}. If the graph is
strongly connected, then there is a single SCC and the predicate
@code{all(s == 1)} evaluates to true
@end table
@end deftypefn
@menu
* State occupancy probabilities (DTMC)::
* Birth-death process (DTMC)::
* Expected number of visits (DTMC)::
* Time-averaged expected sojourn times (DTMC)::
* Mean time to absorption (DTMC)::
* First passage times (DTMC)::
@end menu
@c
@c
@c
@node State occupancy probabilities (DTMC)
@subsection State occupancy probabilities
Given a discrete-time Markov chain with state space @math{@{1,
@dots{}, N@}}, we denote with @math{{\bf \pi}(n) = \left[\pi_1(n),
@dots{} \pi_N(n) \right]} the @emph{state occupancy probability
vector} at step @math{n = 0, 1, @dots{}}. @math{\pi_i(n)}
is the probability that the system is in state @math{i} after @math{n}
transitions.
Given the transition probability matrix @math{\bf P} and the initial
state occupancy probability vector @math{{\bf \pi}(0) =
\left[\pi_1(0), @dots{}, \pi_N(0)\right]}, @math{{\bf \pi}(n)} can be
computed as:
@iftex
@tex
$${\bf \pi}(n) = {\bf \pi}(0) {\bf P}^n$$
@end tex
@end iftex
@ifnottex
@math{\pi(n) = \pi(0) P^n}
@end ifnottex
Under certain conditions, there exists a @emph{stationary state
occupancy probability} @math{{\bf \pi} = \lim_{n \rightarrow +\infty}
{\bf \pi}(n)}, which is independent from @math{{\bf \pi}(0)}. The
vector @math{\bf \pi} is the solution of the following linear system:
@iftex
@tex
$$
\left\{ \eqalign{
{\bf \pi P} & = {\bf \pi} \cr
{\bf \pi 1}^T & = 1
} \right.
$$
@end tex
@end iftex
@ifnottex
@example
@group
/
| \pi P = \pi
| \pi 1^T = 1
\
@end group
@end example
@end ifnottex
@noindent where @math{\bf 1} is the row vector of ones, and @math{( \cdot )^T}
the transpose operator.
@c
@anchor{doc-dtmc}
@deftypefn {Function File} {@var{p} =} dtmc (@var{P})
@deftypefnx {Function File} {@var{p} =} dtmc (@var{P}, @var{n}, @var{p0})
@cindex Markov chain, discrete time
@cindex discrete time Markov chain
@cindex DTMC
@cindex Markov chain, stationary probabilities
@cindex Markov chain, transient probabilities
Compute stationary or transient state occupancy probabilities for a discrete-time Markov chain.
With a single argument, compute the stationary state occupancy
probabilities @code{@var{p}(1), @dots{}, @var{p}(N)} for a
discrete-time Markov chain with finite state space @math{@{1, @dots{},
N@}} and with @math{N \times N} transition matrix
@var{P}. With three arguments, compute the transient state occupancy
probabilities @code{@var{p}(1), @dots{}, @var{p}(N)} that the system is in
state @math{i} after @var{n} steps, given initial occupancy
probabilities @var{p0}(1), @dots{}, @var{p0}(N).
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
transition probabilities from state @math{i} to state @math{j}.
@var{P} must be an @math{N \times N} irreducible stochastic matrix,
meaning that the sum of each row must be 1 (@math{\sum_{j=1}^N
P_{i, j} = 1}), and the rank of @var{P} must be @math{N}.
@item @var{n}
Number of transitions after which state occupancy probabilities are computed
(scalar, @math{n @geq{} 0})
@item @var{p0}(i)
probability that at step 0 the system is in state @math{i} (vector
of length @math{N}).
@end table
@strong{OUTPUTS}
@table @code
@item @var{p}(i)
If this function is called with a single argument, @code{@var{p}(i)}
is the steady-state probability that the system is in state @math{i}.
If this function is called with three arguments, @code{@var{p}(i)}
is the probability that the system is in state @math{i}
after @var{n} transitions, given the probabilities
@code{@var{p0}(i)} that the initial state is @math{i}.
@end table
@xseealso{ctmc}
@end deftypefn
@noindent @strong{EXAMPLE}
The following example is from @ref{GrSn97}. Let us consider a maze
with nine rooms, as shown in the following figure
@example
@group
+-----+-----+-----+
| | | |
| 1 2 3 |
| | | |
+- -+- -+- -+
| | | |
| 4 5 6 |
| | | |
+- -+- -+- -+
| | | |
| 7 8 9 |
| | | |
+-----+-----+-----+
@end group
@end example
A mouse is placed in one of the rooms and can wander around. At each
step, the mouse moves from the current room to a neighboring one with
equal probability. For example, if it is in room 1, it can move to
room 2 and 4 with probability @math{1/2}, respectively; if the mouse
is in room 8, it can move to either 7, 5 or 9 with probability
@math{1/3}.
The transition probabilities @math{P_{i, j}} from room @math{i} to
room @math{j} can be summarized in the following matrix:
@iftex
@tex
$$ {\bf P} =
\pmatrix{ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 & 0 \cr
1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 0 \cr
0 & 1/2 & 0 & 0 & 0 & 1/2 & 0 & 0 & 0 \cr
1/3 & 0 & 0 & 0 & 1/3 & 0 & 1/3 & 0 & 0 \cr
0 & 1/4 & 0 & 1/4 & 0 & 1/4 & 0 & 1/4 & 0 \cr
0 & 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 \cr
0 & 0 & 0 & 1/2 & 0 & 0 & 0 & 1/2 & 0 \cr
0 & 0 & 0 & 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \cr
0 & 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 }
$$
@end tex
@end iftex
@ifnottex
@example
@group
/ 0 1/2 0 1/2 0 0 0 0 0 \
| 1/3 0 1/3 0 1/3 0 0 0 0 |
| 0 1/2 0 0 0 1/2 0 0 0 |
| 1/3 0 0 0 1/3 0 1/3 0 0 |
P = | 0 1/4 0 1/4 0 1/4 0 1/4 0 |
| 0 0 1/3 0 1/3 0 0 0 1/3 |
| 0 0 0 1/2 0 0 0 1/2 0 |
| 0 0 0 0 1/3 0 1/3 0 1/3 |
\ 0 0 0 0 0 1/2 0 1/2 0 /
@end group
@end example
@end ifnottex
The stationary state occupancy probabilities can then be computed
with the following code:
@example
@group
@verbatim
P = zeros(9,9);
P(1,[2 4] ) = 1/2;
P(2,[1 5 3] ) = 1/3;
P(3,[2 6] ) = 1/2;
P(4,[1 5 7] ) = 1/3;
P(5,[2 4 6 8]) = 1/4;
P(6,[3 5 9] ) = 1/3;
P(7,[4 8] ) = 1/2;
P(8,[7 5 9] ) = 1/3;
P(9,[6 8] ) = 1/2;
p = dtmc(P);
disp(p)
@end verbatim
@end group
@result{} 0.083333 0.125000 0.083333 0.125000
0.166667 0.125000 0.083333 0.125000
0.083333
@end example
@c
@node Birth-death process (DTMC)
@subsection Birth-death process
@anchor{doc-dtmcbd}
@deftypefn {Function File} {@var{P} =} dtmcbd (@var{b}, @var{d})
@cindex Markov chain, discrete time
@cindex DTMC
@cindex discrete time Markov chain
@cindex birth-death process, DTMC
Returns the transition probability matrix @math{P} for a discrete
birth-death process over state space @math{@{1, @dots{}, N@}}.
For each @math{i=1, @dots{}, (N-1)},
@code{@var{b}(i)} is the transition probability from state
@math{i} to @math{(i+1)}, and @code{@var{d}(i)} is the transition
probability from state @math{(i+1)} to @math{i}.
Matrix @math{\bf P} is defined as:
@tex
$$ \pmatrix{ (1-\lambda_1) & \lambda_1 & & & & \cr
\mu_1 & (1 - \mu_1 - \lambda_2) & \lambda_2 & & \cr
& \mu_2 & (1 - \mu_2 - \lambda_3) & \lambda_3 & & \cr
\cr
& & \ddots & \ddots & \ddots & & \cr
\cr
& & & \mu_{N-2} & (1 - \mu_{N-2}-\lambda_{N-1}) & \lambda_{N-1} \cr
& & & & \mu_{N-1} & (1-\mu_{N-1}) }
$$
@end tex
@ifnottex
@example
@group
/ \
| 1-b(1) b(1) |
| d(1) (1-d(1)-b(2)) b(2) |
| d(2) (1-d(2)-b(3)) b(3) |
| |
| ... ... ... |
| |
| d(N-2) (1-d(N-2)-b(N-1)) b(N-1) |
| d(N-1) 1-d(N-1) |
\ /
@end group
@end example
@end ifnottex
@noindent where @math{\lambda_i} and @math{\mu_i} are the birth and
death probabilities, respectively.
@xseealso{ctmcbd}
@end deftypefn
@c
@node Expected number of visits (DTMC)
@subsection Expected Number of Visits
Given a @math{N} state discrete-time Markov chain with transition
matrix @math{\bf P} and an integer @math{n @geq{} 0}, we let
@math{L_i(n)} be the the expected number of visits to state @math{i}
during the first @math{n} transitions. The vector @math{{\bf L}(n) =
\left[ L_1(n), @dots{}, L_N(n) \right]} is defined as
@iftex
@tex
$$ {\bf L}(n) = \sum_{i=0}^n {\bf \pi}(i) = \sum_{i=0}^n {\bf \pi}(0) {\bf P}^i $$
@end tex
@end iftex
@ifnottex
@example
@group
n n
___ ___
\ \ i
L(n) = > pi(i) = > pi(0) P
/___ /___
i=0 i=0
@end group
@end example
@end ifnottex
@noindent where @math{{\bf \pi}(i) = {\bf \pi}(0){\bf P}^i} is the state
occupancy probability after @math{i} transitions, and @math{{\bf
\pi}(0) = \left[\pi_1(0), @dots{}, \pi_N(0) \right]} are the initial
state occupancy probabilities.
If @math{\bf P} is absorbing, i.e., the stochastic process eventually
enters a state with no outgoing transitions, then we can compute the
expected number of visits until absorption @math{\bf L}. To do so, we
first rearrange the states by rewriting @math{\bf P} as
@iftex
@tex
$$ {\bf P} = \pmatrix{ {\bf Q} & {\bf R} \cr
{\bf 0} & {\bf I} }$$
@end tex
@end iftex
@ifnottex
@example
@group
/ Q | R \
P = |---+---|
\ 0 | I /
@end group
@end example
@end ifnottex
@noindent where the first @math{t} states are transient
and the last @math{r} states are absorbing (@math{t+r = N}). The
matrix @math{{\bf N} = ({\bf I} - {\bf Q})^{-1}} is called the
@emph{fundamental matrix}; @math{N_{i,j}} is the expected number of
times the process is in the @math{j}-th transient state assuming it
started in the @math{i}-th transient state. If we reshape @math{\bf N}
to the size of @math{\bf P} (filling missing entries with zeros), we
have that, for absorbing chains, @math{{\bf L} = {\bf \pi}(0){\bf N}}.
@anchor{doc-dtmcexps}
@deftypefn {Function File} {@var{L} =} dtmcexps (@var{P}, @var{n}, @var{p0})
@deftypefnx {Function File} {@var{L} =} dtmcexps (@var{P}, @var{p0})
@cindex expected sojourn times, DTMC
@cindex DTMC
@cindex discrete time Markov chain
@cindex Markov chain, discrete time
Compute the expected number of visits to each state during the first
@var{n} transitions, or until abrosption.
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
@math{N \times N} transition matrix. @code{@var{P}(i,j)} is the
transition probability from state @math{i} to state @math{j}.
@item @var{n}
Number of steps during which the expected number of visits are
computed (@math{@var{n} @geq{} 0}). If @code{@var{n}=0}, returns
@var{p0}. If @code{@var{n} > 0}, returns the expected number of
visits after exactly @var{n} transitions.
@item @var{p0}(i)
Initial state occupancy probabilities; @code{@var{p0}(i)} is
the probability that the system is in state @math{i} at step 0.
@end table
@strong{OUTPUTS}
@table @code
@item @var{L}(i)
When called with two arguments, @code{@var{L}(i)} is the expected
number of visits to state @math{i} before absorption. When
called with three arguments, @code{@var{L}(i)} is the expected number
of visits to state @math{i} during the first @var{n} transitions.
@end table
@strong{REFERENCES}
@itemize
@item Grinstead, Charles M.; Snell, J. Laurie (July
1997). @cite{Introduction to Probability}, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
@end itemize
@xseealso{ctmcexps}
@end deftypefn
@c
@node Time-averaged expected sojourn times (DTMC)
@subsection Time-averaged expected sojourn times
@anchor{doc-dtmctaexps}
@deftypefn {Function File} {@var{M} =} dtmctaexps (@var{P}, @var{n}, @var{p0})
@deftypefnx {Function File} {@var{M} =} dtmctaexps (@var{P}, @var{p0})
@cindex time-alveraged sojourn time, DTMC
@cindex discrete time Markov chain
@cindex Markov chain, discrete time
@cindex DTMC
Compute the @emph{time-averaged sojourn times} @code{@var{M}(i)},
defined as the fraction of time spent in state @math{i} during the
first @math{n} transitions (or until absorption), assuming that the
state occupancy probabilities at time 0 are @var{p0}.
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
@math{N \times N} transition probability matrix.
@item @var{n}
Number of transitions during which the time-averaged expected sojourn times
are computed (scalar, @math{@var{n} @geq{} 0}). if @math{@var{n} = 0},
returns @var{p0}.
@item @var{p0}(i)
Initial state occupancy probabilities (vector of length @math{N}).
@end table
@strong{OUTPUTS}
@table @code
@item @var{M}(i)
If this function is called with three arguments, @code{@var{M}(i)} is
the expected fraction of steps @math{@{0, @dots{}, n@}} spent in
state @math{i}, assuming that the state occupancy probabilities at
time zero are @var{p0}. If this function is called with two
arguments, @code{@var{M}(i)} is the expected fraction of steps spent
in state @math{i} until absorption. @var{M} is a vector of length
@math{N}.
@end table
@xseealso{dtmcexps}
@end deftypefn
@c
@node Mean time to absorption (DTMC)
@subsection Mean Time to Absorption
The @emph{mean time to absorption} is defined as the average number of
transitions that are required to enter an absorbing state, starting
from a transient state or given initial state occupancy probabilities
@math{{\bf \pi}(0)}.
Let @math{t_i} be the expected number of transitions before being
absorbed in any absorbing state, starting from state @math{i}. The
vector @math{{\bf t} = [t_1, @dots{}, t_N]} can be computed from the
fundamental matrix @math{\bf N} (@pxref{Expected number of visits
(DTMC)}) as
@iftex
@tex
$$ {\bf t} = {\bf N c} $$
@end tex
@end iftex
@ifnottex
@math{t = N c}
@end ifnottex
@noindent where @math{\bf c} is a column vector of 1's.
Let @math{{\bf B} = [ B_{i, j} ]} be a matrix where @math{B_{i, j}} is
the probability of being absorbed in state @math{j}, starting from
transient state @math{i}. Again, using matrices @math{\bf N} and
@math{\bf R} (@pxref{Expected number of visits (DTMC)}) we can write
@iftex
@tex
$$ {\bf B} = {\bf N R} $$
@end tex
@end iftex
@ifnottex
@math{B = N R}
@end ifnottex
@anchor{doc-dtmcmtta}
@deftypefn {Function File} {[@var{t} @var{N} @var{B}] =} dtmcmtta (@var{P})
@deftypefnx {Function File} {[@var{t} @var{N} @var{B}] =} dtmcmtta (@var{P}, @var{p0})
@cindex mean time to absorption, DTMC
@cindex absorption probabilities, DTMC
@cindex fundamental matrix
@cindex DTMC
@cindex discrete time Markov chain
@cindex Markov chain, discrete time
Compute the expected number of steps before absorption for a
DTMC with state space @math{@{1, @dots{}, N@}}
and transition probability matrix @var{P}.
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
@math{N \times N} transition probability matrix.
@code{@var{P}(i,j)} is the transition probability from state
@math{i} to state @math{j}.
@item @var{p0}(i)
Initial state occupancy probabilities (vector of length @math{N}).
@end table
@strong{OUTPUTS}
@table @code
@item @var{t}
@itemx @var{t}(i)
When called with a single argument, @var{t} is a vector of length
@math{N} such that @code{@var{t}(i)} is the expected number of steps
before being absorbed in any absorbing state, starting from state
@math{i}; if @math{i} is absorbing, @code{@var{t}(i) = 0}. When
called with two arguments, @var{t} is a scalar, and represents the
expected number of steps before absorption, starting from the initial
state occupancy probability @var{p0}.
@item @var{N}(i)
@itemx @var{N}(i,j)
When called with a single argument, @var{N} is the @math{N \times N}
fundamental matrix for @var{P}. @code{@var{N}(i,j)} is the expected
number of visits to transient state @var{j} before absorption, if the
system started in transient state @var{i}. The initial state is counted
if @math{i = j}. When called with two arguments, @var{N} is a vector
of length @math{N} such that @code{@var{N}(j)} is the expected number
of visits to transient state @var{j} before absorption, given initial
state occupancy probability @var{P0}.
@item @var{B}(i)
@itemx @var{B}(i,j)
When called with a single argument, @var{B} is a @math{N \times N}
matrix where @code{@var{B}(i,j)} is the probability of being
absorbed in state @math{j}, starting from transient state @math{i};
if @math{j} is not absorbing, @code{@var{B}(i,j) = 0}; if @math{i}
is absorbing, @code{@var{B}(i,i) = 1} and @code{@var{B}(i,j) = 0}
for all @math{i \neq j}. When called with two arguments, @var{B} is
a vector of length @math{N} where @code{@var{B}(j)} is the
probability of being absorbed in state @var{j}, given initial state
occupancy probabilities @var{p0}.
@end table
@strong{REFERENCES}
@itemize
@item Grinstead, Charles M.; Snell, J. Laurie (July
1997). @cite{Introduction to Probability}, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
@end itemize
@xseealso{ctmcmtta}
@end deftypefn
@c
@node First passage times (DTMC)
@subsection First Passage Times
The First Passage Time @math{M_{i, j}} is the average number of
transitions needed to enter state @math{j} for the first time,
starting from state @math{i}. Matrix @math{\bf M} satisfies the
property
@iftex
@tex
$$ M_{i, j} = 1 + \sum_{k \neq j} P_{i, k} M_{k, j}$$
@end tex
@end iftex
@ifnottex
@example
@group
___
\
M_ij = 1 + > P_ij * M_kj
/___
k!=j
@end group
@end example
@end ifnottex
To compute @math{{\bf M} = [ M_{i, j}]} a different formulation is
used. Let @math{\bf W} be the @math{N \times N} matrix having each
row equal to the stationary state occupancy probability vector
@math{\bf \pi} for @math{\bf P}; let @math{\bf I} be the @math{N
\times N} identity matrix (i.e., the matrix of all ones). Define
@math{\bf Z} as follows:
@iftex
@tex
$$ {\bf Z} = \left( {\bf I} - {\bf P} + {\bf W} \right)^{-1} $$
@end tex
@end iftex
@ifnottex
@example
@group
-1
Z = (I - P + W)
@end group
@end example
@end ifnottex
@noindent Then, we have that
@iftex
@tex
$$ M_{i, j} = {Z_{j, j} - Z_{i, j} \over \pi_j} $$
@end tex
@end iftex
@ifnottex
@example
@group
Z_jj - Z_ij
M_ij = -----------
\pi_j
@end group
@end example
@end ifnottex
According to the definition above, @math{M_{i,i} = 0}. We arbitrarily
set @math{M_{i,i}} to the @emph{mean recurrence time} @math{r_i} for
state @math{i}, that is the average number of transitions needed to
return to state @math{i} starting from it. @math{r_i} is:
@iftex
@tex
$$ r_i = {1 \over \pi_i} $$
@end tex
@end iftex
@ifnottex
@example
@group
1
r_i = -----
\pi_i
@end group
@end example
@end ifnottex
@anchor{doc-dtmcfpt}
@deftypefn {Function File} {@var{M} =} dtmcfpt (@var{P})
@cindex first passage times
@cindex mean recurrence times
@cindex discrete time Markov chain
@cindex Markov chain, discrete time
@cindex DTMC
Compute mean first passage times and mean recurrence times
for an irreducible discrete-time Markov chain over the state space
@math{@{1, @dots{}, N@}}.
@strong{INPUTS}
@table @code
@item @var{P}(i,j)
transition probability from state @math{i} to state @math{j}.
@var{P} must be an irreducible stochastic matrix, which means that
the sum of each row must be 1 (@math{\sum_{j=1}^N P_{i j} = 1}),
and the rank of @var{P} must be @math{N}.
@end table
@strong{OUTPUTS}
@table @code
@item @var{M}(i,j)
For all @math{1 @leq{} i, j @leq{} N}, @math{i \neq j}, @code{@var{M}(i,j)} is
the average number of transitions before state @var{j} is entered
for the first time, starting from state @var{i}.
@code{@var{M}(i,i)} is the @emph{mean recurrence time} of state
@math{i}, and represents the average time needed to return to state
@var{i}.
@end table
@strong{REFERENCES}
@itemize
@item Grinstead, Charles M.; Snell, J. Laurie (July
1997). @cite{Introduction to Probability}, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
@end itemize
@xseealso{ctmcfpt}
@end deftypefn
@c
@c
@c
@node Continuous-Time Markov Chains
@section Continuous-Time Markov Chains
A stochastic process @math{@{X(t), t @geq{} 0@}} is a continuous-time
Markov chain if, for all integers @math{n}, and for any sequence
@math{t_0, t_1 , @dots{}, t_n, t_{n+1}} such that @math{t_0 < t_1 <
@dots{} < t_n < t_{n+1}}, we have
@iftex
@tex
$$\eqalign{P(X(t_{n+1}) = x_{n+1}\ |\ X(t_n) = x_n, X(t_{n-1}) = x_{n-1}, \ldots, X(t_0) = x_0) \cr
&\hskip -8 em = P(X(t_{n+1}) = x_{n+1}\ |\ X(t_n) = x_n)}$$
@end tex
@end iftex
@ifnottex
@math{P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, ..., X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)}
@end ifnottex
A continuous-time Markov chain is defined according to an
@emph{infinitesimal generator matrix} @math{{\bf Q} = [Q_{i,j}]},
where for each @math{i \neq j}, @math{Q_{i, j}} is the transition rate
from state @math{i} to state @math{j}. The matrix @math{\bf Q} must
satisfy the property that, for all @math{i}, @math{\sum_{j=1}^N Q_{i,
j} = 0}.
@anchor{doc-ctmcchkQ}
@deftypefn {Function File} {[@var{result} @var{err}] =} ctmcchkQ (@var{Q})
@cindex Markov chain, continuous time
If @var{Q} is a valid infinitesimal generator matrix, return
the size (number of rows or columns) of @var{Q}. If @var{Q} is not
an infinitesimal generator matrix, set @var{result} to zero, and
@var{err} to an appropriate error string.
@end deftypefn
Similarly to the DTMC case, a CTMC is @emph{irreducible} if every
state is eventually reachable from every other state in finite time.
@anchor{doc-ctmcisir}
@deftypefn {Function File} {[@var{r} @var{s}] =} ctmcisir (@var{P})
@cindex Markov chain, continuous time
@cindex continuous time Markov chain
@cindex CTMC
@cindex irreducible Markov chain
Check if @var{Q} is irreducible, and identify Strongly Connected
Components (SCC) in the transition graph of the DTMC with infinitesimal
generator matrix @var{Q}.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
Infinitesimal generator matrix. @var{Q} is a @math{N \times N} square
matrix where @code{@var{Q}(i,j)} is the transition rate from state
@math{i} to state @math{j}, for @math{1 @leq{} i, j @leq{} N},
@math{i \neq j}.
@end table
@strong{OUTPUTS}
@table @code
@item @var{r}
1 if @var{Q} is irreducible, 0 otherwise.
@item @var{s}(i)
strongly connected component (SCC) that state @math{i} belongs to.
SCCs are numbered @math{1, 2, @dots{}}. If the graph is strongly
connected, then there is a single SCC and the predicate @code{all(s == 1)}
evaluates to true.
@end table
@end deftypefn
@menu
* State occupancy probabilities (CTMC)::
* Birth-death process (CTMC)::
* Expected sojourn times (CTMC)::
* Time-averaged expected sojourn times (CTMC)::
* Mean time to absorption (CTMC)::
* First passage times (CTMC)::
@end menu
@node State occupancy probabilities (CTMC)
@subsection State occupancy probabilities
Similarly to the discrete case, we denote with @math{{\bf \pi}(t) =
\left[\pi_1(t), @dots{}, \pi_N(t) \right]} the @emph{state occupancy
probability vector} at time @math{t}. @math{\pi_i(t)} is the
probability that the system is in state @math{i} at time @math{t
@geq{} 0}.
Given the infinitesimal generator matrix @math{\bf Q} and initial
state occupancy probabilities @math{{\bf \pi}(0) = \left[\pi_1(0),
@dots{}, \pi_N(0)\right]}, the occupancy probabilities
@math{{\bf \pi}(t)} at time @math{t} can be computed as:
@iftex
@tex
$${\bf \pi}(t) = {\bf \pi}(0) \exp( {\bf Q} t )$$
@end tex
@end iftex
@ifnottex
@example
@group
\pi(t) = \pi(0) exp(Qt)
@end group
@end example
@end ifnottex
@noindent where @math{\exp( {\bf Q} t )} is the matrix exponential
of @math{{\bf Q} t}. Under certain conditions, there exists a
@emph{stationary state occupancy probability} @math{{\bf \pi} =
\lim_{t \rightarrow +\infty} {\bf \pi}(t)} that is independent from
@math{{\bf \pi}(0)}. @math{\bf \pi} is the solution of the following
linear system:
@iftex
@tex
$$
\left\{ \eqalign{
{\bf \pi Q} & = {\bf 0} \cr
{\bf \pi 1}^T & = 1
} \right.
$$
@end tex
@end iftex
@ifnottex
@example
@group
/
| \pi Q = 0
| \pi 1^T = 1
\
@end group
@end example
@end ifnottex
@anchor{doc-ctmc}
@deftypefn {Function File} {@var{p} =} ctmc (@var{Q})
@deftypefnx {Function File} {@var{p} =} ctmc (@var{Q}, @var{t}, @var{p0})
@cindex Markov chain, continuous time
@cindex continuous time Markov chain
@cindex Markov chain, state occupancy probabilities
@cindex stationary probabilities
@cindex CTMC
Compute stationary or transient state occupancy probabilities for a continuous-time Markov chain.
With a single argument, compute the stationary state occupancy
probabilities @math{@var{p}(1), @dots{}, @var{p}(N)} for a
continuous-time Markov chain with finite state space @math{@{1, @dots{},
N@}} and @math{N \times N} infinitesimal generator matrix @var{Q}.
With three arguments, compute the state occupancy probabilities
@math{@var{p}(1), @dots{}, @var{p}(N)} that the system is in state @math{i}
at time @var{t}, given initial state occupancy probabilities
@math{@var{p0}(1), @dots{}, @var{p0}(N)} at time 0.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
Infinitesimal generator matrix. @var{Q} is a @math{N \times N} square
matrix where @code{@var{Q}(i,j)} is the transition rate from state
@math{i} to state @math{j}, for @math{1 @leq{} i \neq j @leq{} N}.
@var{Q} must satisfy the property that @math{\sum_{j=1}^N Q_{i, j} =
0}
@item @var{t}
Time at which to compute the transient probability (@math{t @geq{}
0}). If omitted, the function computes the steady state occupancy
probability vector.
@item @var{p0}(i)
probability that the system is in state @math{i} at time 0.
@end table
@strong{OUTPUTS}
@table @code
@item @var{p}(i)
If this function is invoked with a single argument, @code{@var{p}(i)}
is the steady-state probability that the system is in state @math{i},
@math{i = 1, @dots{}, N}. If this function is invoked with three
arguments, @code{@var{p}(i)} is the probability that the system is in
state @math{i} at time @var{t}, given the initial occupancy
probabilities @var{p0}(1), @dots{}, @var{p0}(N).
@end table
@xseealso{dtmc}
@end deftypefn
@noindent @strong{EXAMPLE}
Consider a two-state CTMC where all transition rates between states
are equal to 1. The stationary state occupancy probabilities can be
computed as follows:
@example
@group
@verbatim
Q = [ -1 1; ...
1 -1 ];
q = ctmc(Q)
@end verbatim
@result{} q = 0.50000 0.50000
@end group
@end example
@c
@c
@c
@node Birth-death process (CTMC)
@subsection Birth-Death Process
@anchor{doc-ctmcbd}
@deftypefn {Function File} {@var{Q} =} ctmcbd (@var{b}, @var{d})
@cindex Markov chain, continuous time
@cindex continuous time Markov chain
@cindex CTMC
@cindex birth-death process, CTMC
Returns the infinitesimal generator matrix @math{Q} for a
continuous birth-death process over the finite state space
@math{@{1, @dots{}, N@}}. For each @math{i=1, @dots{}, (N-1)},
@code{@var{b}(i)} is the transition rate from state @math{i} to
state @math{(i+1)}, and @code{@var{d}(i)} is the transition rate from state
@math{(i+1)} to state @math{i}.
Matrix @math{\bf Q} is therefore defined as:
@tex
$$ \pmatrix{ -\lambda_1 & \lambda_1 & & & & \cr
\mu_1 & -(\mu_1 + \lambda_2) & \lambda_2 & & \cr
& \mu_2 & -(\mu_2 + \lambda_3) & \lambda_3 & & \cr
\cr
& & \ddots & \ddots & \ddots & & \cr
\cr
& & & \mu_{N-2} & -(\mu_{N-2}+\lambda_{N-1}) & \lambda_{N-1} \cr
& & & & \mu_{N-1} & -\mu_{N-1} }
$$
@end tex
@ifnottex
@example
@group
/ \
| -b(1) b(1) |
| d(1) -(d(1)+b(2)) b(2) |
| d(2) -(d(2)+b(3)) b(3) |
| |
| ... ... ... |
| |
| d(N-2) -(d(N-2)+b(N-1)) b(N-1) |
| d(N-1) -d(N-1) |
\ /
@end group
@end example
@end ifnottex
@noindent where @math{\lambda_i} and @math{\mu_i} are the birth and
death rates, respectively.
@xseealso{dtmcbd}
@end deftypefn
@c
@c
@c
@node Expected sojourn times (CTMC)
@subsection Expected Sojourn Times
Given a @math{N} state continuous-time Markov Chain with infinitesimal
generator matrix @math{\bf Q}, we define the vector @math{{\bf L}(t) =
\left[L_1(t), @dots{}, L_N(t)\right]} such that @math{L_i(t)} is the
expected sojourn time in state @math{i} during the interval
@math{[0,t)}, assuming that the initial occupancy probabilities at time
0 were @math{{\bf \pi}(0)}. @math{{\bf L}(t)} can be expressed as the
solution of the following differential equation:
@iftex
@tex
$$ { d{\bf L}(t) \over dt} = {\bf L}(t){\bf Q} + {\bf \pi}(0), \qquad {\bf L}(0) = {\bf 0} $$
@end tex
@end iftex
@ifnottex
@example
@group
dL
--(t) = L(t) Q + pi(0), L(0) = 0
dt
@end group
@end example
@end ifnottex
Alternatively, @math{{\bf L}(t)} can also be expressed in integral
form as:
@iftex
@tex
$$ {\bf L}(t) = \int_0^t {\bf \pi}(u) du$$
@end tex
@end iftex
@ifnottex
@example
@group
/ t
L(t) = | pi(u) du
/ 0
@end group
@end example
@end ifnottex
@noindent where @math{{\bf \pi}(t) = {\bf \pi}(0) \exp({\bf Q}t)} is
the state occupancy probability at time @math{t}; @math{\exp({\bf Q}t)}
is the matrix exponential of @math{{\bf Q}t}.
If there are absorbing states, we can define the vector of
@emph{expected sojourn times until absorption} @math{{\bf L}(\infty)},
where for each transient state @math{i}, @math{L_i(\infty)} is the
expected total time spent in state @math{i} until absorption, assuming
that the system started with given state occupancy probabilities
@math{{\bf \pi}(0)}. Let @math{\tau} be the set of transient (i.e.,
non absorbing) states; let @math{{\bf Q}_\tau} be the restriction of
@math{\bf Q} to the transient sub-states only. Similarly, let
@math{{\bf \pi}_\tau(0)} be the restriction of the initial state
occupancy probability vector @math{{\bf \pi}(0)} to transient states
@math{\tau}.
The expected time to absorption @math{{\bf L}_\tau(\infty)} is defined as
the solution of the following equation:
@iftex
@tex
$$ {\bf L}_\tau(\infty){\bf Q}_\tau = -{\bf \pi}_\tau(0) $$
@end tex
@end iftex
@ifnottex
@example
@group
L_T( inf ) Q_T = -pi_T(0)
@end group
@end example
@end ifnottex
@anchor{doc-ctmcexps}
@deftypefn {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{t}, @var{p} )
@deftypefnx {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{p})
@cindex Markov chain, continuous time
@cindex continuous time Markov chain
@cindex expected sojourn time, CTMC
@cindex CTMC
With three arguments, compute the expected times @code{@var{L}(i)}
spent in each state @math{i} during the time interval @math{[0,t]},
assuming that the initial occupancy vector is @var{p}. With two
arguments, compute the expected time @code{@var{L}(i)} spent in each
transient state @math{i} until absorption.
@strong{Note:} In its current implementation, this function
requires that an absorbing state is reachable from any
non-absorbing state of @math{Q}.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
@math{N \times N} infinitesimal generator matrix. @code{@var{Q}(i,j)}
is the transition rate from state @math{i} to state @math{j},
@math{1 @leq{} i, j @leq{} N}, @math{i \neq j}.
The matrix @var{Q} must also satisfy the
condition @math{\sum_{j=1}^N Q_{i,j} = 0} for every @math{i=1, @dots{}, N}.
@item @var{t}
If given, compute the expected sojourn times in @math{[0,t]}
@item @var{p}(i)
Initial occupancy probability vector; @code{@var{p}(i)} is the
probability the system is in state @math{i} at time 0, @math{i = 1,
@dots{}, N}
@end table
@strong{OUTPUTS}
@table @code
@item @var{L}(i)
If this function is called with three arguments, @code{@var{L}(i)} is
the expected time spent in state @math{i} during the interval
@math{[0,t]}. If this function is called with two arguments
@code{@var{L}(i)} is the expected time spent in transient state
@math{i} until absorption; if state @math{i} is absorbing,
@code{@var{L}(i)} is zero.
@end table
@xseealso{dtmcexps}
@end deftypefn
@noindent @strong{EXAMPLE}
Let us consider a 4-states pure birth continuous process where the
transition rate from state @math{i} to state @math{(i+1)} is
@math{\lambda_i = i \lambda} (@math{i=1, 2, 3}), with @math{\lambda =
0.5}. The following code computes the expected sojourn time for each
state @math{i}, given initial occupancy probabilities @math{{\bf
\pi}_0=[1, 0, 0, 0]}.
@example
@group
@verbatim
lambda = 0.5;
N = 4;
b = lambda*[1:N-1];
d = zeros(size(b));
Q = ctmcbd(b,d);
t = linspace(0,10,100);
p0 = zeros(1,N); p0(1)=1;
L = zeros(length(t),N);
for i=1:length(t)
L(i,:) = ctmcexps(Q,t(i),p0);
endfor
plot( t, L(:,1), ";State 1;", "linewidth", 2, ...
t, L(:,2), ";State 2;", "linewidth", 2, ...
t, L(:,3), ";State 3;", "linewidth", 2, ...
t, L(:,4), ";State 4;", "linewidth", 2 );
legend("location","northwest"); legend("boxoff");
xlabel("Time");
ylabel("Expected sojourn time");
@end verbatim
@end group
@end example
@c
@c
@c
@node Time-averaged expected sojourn times (CTMC)
@subsection Time-Averaged Expected Sojourn Times
@anchor{doc-ctmctaexps}
@deftypefn {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{t}, @var{p0})
@deftypefnx {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{p0})
@cindex Markov chain, continuous time
@cindex time-alveraged sojourn time, CTMC
@cindex continuous time Markov chain
@cindex CTMC
Compute the @emph{time-averaged sojourn time} @code{@var{M}(i)},
defined as the fraction of the time interval @math{[0,t]} (or until
absorption) spent in state @math{i}, assuming that the state
occupancy probabilities at time 0 are @var{p}.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
Infinitesimal generator matrix. @code{@var{Q}(i,j)} is the transition
rate from state @math{i} to state @math{j},
@math{1 @leq{} i,j @leq{} N}, @math{i \neq j}. The
matrix @var{Q} must also satisfy the condition @math{\sum_{j=1}^N Q_{i,j} = 0}
@item @var{t}
Time. If omitted, the results are computed until absorption.
@item @var{p0}(i)
initial state occupancy probabilities. @code{@var{p0}(i)} is the
probability that the system is in state @math{i} at time 0, @math{i
= 1, @dots{}, N}
@end table
@strong{OUTPUTS}
@table @code
@item @var{M}(i)
When called with three arguments, @code{@var{M}(i)} is the expected
fraction of the interval @math{[0,t]} spent in state @math{i}
assuming that the state occupancy probability at time zero is
@var{p}. When called with two arguments, @code{@var{M}(i)} is the
expected fraction of time until absorption spent in state @math{i};
in this case the mean time to absorption is @code{sum(@var{M})}.
@end table
@xseealso{ctmcexps}
@end deftypefn
@noindent @strong{EXAMPLE}
@example
@group
@verbatim
lambda = 0.5;
N = 4;
birth = lambda*linspace(1,N-1,N-1);
death = zeros(1,N-1);
Q = diag(birth,1)+diag(death,-1);
Q -= diag(sum(Q,2));
t = linspace(1e-5,30,100);
p = zeros(1,N); p(1)=1;
M = zeros(length(t),N);
for i=1:length(t)
M(i,:) = ctmctaexps(Q,t(i),p);
endfor
clf;
plot(t, M(:,1), ";State 1;", "linewidth", 2, ...
t, M(:,2), ";State 2;", "linewidth", 2, ...
t, M(:,3), ";State 3;", "linewidth", 2, ...
t, M(:,4), ";State 4 (absorbing);", "linewidth", 2 );
legend("location","east"); legend("boxoff");
xlabel("Time");
ylabel("Time-averaged Expected sojourn time");
@end verbatim
@end group
@end example
@c
@c
@c
@node Mean time to absorption (CTMC)
@subsection Mean Time to Absorption
@anchor{doc-ctmcmtta}
@deftypefn {Function File} {@var{t} =} ctmcmtta (@var{Q}, @var{p})
@cindex Markov chain, continuous time
@cindex continuous time Markov chain
@cindex CTMC
@cindex mean time to absorption, CTMC
Compute the Mean-Time to Absorption (MTTA) of the CTMC described by
the infinitesimal generator matrix @var{Q}, starting from initial
occupancy probabilities @var{p}. If there are no absorbing states, this
function fails with an error.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
@math{N \times N} infinitesimal generator matrix. @code{@var{Q}(i,j)}
is the transition rate from state @math{i} to state @math{j}, @math{i
\neq j}. The matrix @var{Q} must satisfy the condition
@math{\sum_{j=1}^N Q_{i,j} = 0}
@item @var{p}(i)
probability that the system is in state @math{i}
at time 0, for each @math{i=1, @dots{}, N}
@end table
@strong{OUTPUTS}
@table @code
@item @var{t}
Mean time to absorption of the process represented by matrix @var{Q}.
If there are no absorbing states, this function fails.
@end table
@strong{REFERENCES}
@itemize
@item
G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications}, Wiley,
1998.
@end itemize
@xseealso{ctmcexps}
@end deftypefn
@noindent @strong{EXAMPLE}
Let us consider a simple model of redundant disk array. We assume that
the array is made of 5 independent disks and can tolerate up to 2 disk
failures without losing data. If three or more disks break, the array
is dead and unrecoverable. We want to estimate the
Mean-Time-To-Failure (MTTF) of the disk array.
We model this system as a 4 states continuous Markov chain with state
space @math{@{ 2, 3, 4, 5 @}}. In state @math{i} there are exactly
@math{i} active (i.e., non failed) disks; state @math{2} is
absorbing. Let @math{\mu} be the failure rate of a single disk. The
system starts in state @math{5} (all disks are operational). We use a
pure death process, where the death rate from state @math{i} to state
@math{(i-1)} is @math{\mu i}, for @math{i = 3, 4, 5}).
The MTTF of the disk array is the MTTA of the Markov Chain, and can be
computed as follows:
@example
@group
@verbatim
mu = 0.01;
death = [ 3 4 5 ] * mu;
birth = 0*death;
Q = ctmcbd(birth,death);
t = ctmcmtta(Q,[0 0 0 1])
@end verbatim
@result{} t = 78.333
@end group
@end example
@c
@c
@c
@node First passage times (CTMC)
@subsection First Passage Times
@anchor{doc-ctmcfpt}
@deftypefn {Function File} {@var{M} =} ctmcfpt (@var{Q})
@deftypefnx {Function File} {@var{m} =} ctmcfpt (@var{Q}, @var{i}, @var{j})
@cindex first passage times, CTMC
@cindex CTMC
@cindex continuous time Markov chain
@cindex Markov chain, continuous time
Compute mean first passage times for an irreducible continuous-time
Markov chain.
@strong{INPUTS}
@table @code
@item @var{Q}(i,j)
Infinitesimal generator matrix. @var{Q} is a @math{N \times N}
square matrix where @code{@var{Q}(i,j)} is the transition rate from
state @math{i} to state @math{j}, for @math{1 @leq{} i, j @leq{} N},
@math{i \neq j}. Transition rates must be nonnegative, and
@math{\sum_{j=1}^N Q_{i,j} = 0}
@item @var{i}
Initial state.
@item @var{j}
Destination state.
@end table
@strong{OUTPUTS}
@table @code
@item @var{M}(i,j)
average time before state
@var{j} is visited for the first time, starting from state @var{i}.
We let @code{@var{M}(i,i) = 0}.
@item m
@var{m} is the average time before state @var{j} is visited for the first
time, starting from state @var{i}.
@end table
@xseealso{ctmcmtta}
@end deftypefn
|