1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>queueing</title>
<meta name="description" content="User manual for queueing, a GNU Octave package for queueing networks and Markov chains analysis. This package supports single-station queueing systems, queueing networks and Markov chains. The queueing package implements, among others, the Mean Value Analysis (MVA) and convolution algorithms for steady-state analysis of product-form queueing networks. Transient and steady-state analysis of Markov chains is also implemented.">
<meta name="keywords" content="queueing">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="#Top" rel="start" title="Top">
<link href="#Concept-Index" rel="index" title="Concept Index">
<link href="#SEC_Contents" rel="contents" title="Table of Contents">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<h1 class="settitle" align="center">queueing</h1>
<p>Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2018, 2020, 2024 Moreno Marzolla.
</p>
<p>Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
</p>
<p>Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided that
the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
</p>
<p>Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for
modified versions.
</p>
<span id="SEC_Contents"></span>
<h2 class="contents-heading">Table of Contents</h2>
<div class="contents">
<ul class="no-bullet">
<li><a id="toc-Summary-1" href="#Summary">1 Summary</a>
<ul class="no-bullet">
<li><a id="toc-About-the-Queueing-Package-1" href="#About-the-Queueing-Package">1.1 About the Queueing Package</a></li>
<li><a id="toc-Contributing-Guidelines-1" href="#Contributing-Guidelines">1.2 Contributing Guidelines</a></li>
<li><a id="toc-Acknowledgments-1" href="#Acknowledgments">1.3 Acknowledgments</a></li>
</ul></li>
<li><a id="toc-Installation-and-Getting-Started-1" href="#Installation-and-Getting-Started">2 Installation and Getting Started</a>
<ul class="no-bullet">
<li><a id="toc-Installation-through-Octave-package-management-system-1" href="#Installation-through-Octave-package-management-system">2.1 Installation through Octave package management system</a></li>
<li><a id="toc-Manual-installation-1" href="#Manual-installation">2.2 Manual installation</a></li>
<li><a id="toc-Development-sources-1" href="#Development-sources">2.3 Development sources</a></li>
<li><a id="toc-Testing-and-Demos-1" href="#Testing-and-Demos">2.4 Testing and Demos</a></li>
<li><a id="toc-Naming-Conventions-1" href="#Naming-Conventions">2.5 Naming Conventions</a></li>
<li><a id="toc-Quick-start-Guide-1" href="#Quick-start-Guide">2.6 Quick start Guide</a></li>
</ul></li>
<li><a id="toc-Markov-Chains-1" href="#Markov-Chains">3 Markov Chains</a>
<ul class="no-bullet">
<li><a id="toc-Discrete_002dTime-Markov-Chains-1" href="#Discrete_002dTime-Markov-Chains">3.1 Discrete-Time Markov Chains</a>
<ul class="no-bullet">
<li><a id="toc-State-occupancy-probabilities" href="#State-occupancy-probabilities-_0028DTMC_0029">3.1.1 State occupancy probabilities</a></li>
<li><a id="toc-Birth_002ddeath-process" href="#Birth_002ddeath-process-_0028DTMC_0029">3.1.2 Birth-death process</a></li>
<li><a id="toc-Expected-Number-of-Visits" href="#Expected-number-of-visits-_0028DTMC_0029">3.1.3 Expected Number of Visits</a></li>
<li><a id="toc-Time_002daveraged-expected-sojourn-times" href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">3.1.4 Time-averaged expected sojourn times</a></li>
<li><a id="toc-Mean-Time-to-Absorption" href="#Mean-time-to-absorption-_0028DTMC_0029">3.1.5 Mean Time to Absorption</a></li>
<li><a id="toc-First-Passage-Times" href="#First-passage-times-_0028DTMC_0029">3.1.6 First Passage Times</a></li>
</ul></li>
<li><a id="toc-Continuous_002dTime-Markov-Chains-1" href="#Continuous_002dTime-Markov-Chains">3.2 Continuous-Time Markov Chains</a>
<ul class="no-bullet">
<li><a id="toc-State-occupancy-probabilities-1" href="#State-occupancy-probabilities-_0028CTMC_0029">3.2.1 State occupancy probabilities</a></li>
<li><a id="toc-Birth_002dDeath-Process" href="#Birth_002ddeath-process-_0028CTMC_0029">3.2.2 Birth-Death Process</a></li>
<li><a id="toc-Expected-Sojourn-Times" href="#Expected-sojourn-times-_0028CTMC_0029">3.2.3 Expected Sojourn Times</a></li>
<li><a id="toc-Time_002dAveraged-Expected-Sojourn-Times" href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">3.2.4 Time-Averaged Expected Sojourn Times</a></li>
<li><a id="toc-Mean-Time-to-Absorption-1" href="#Mean-time-to-absorption-_0028CTMC_0029">3.2.5 Mean Time to Absorption</a></li>
<li><a id="toc-First-Passage-Times-1" href="#First-passage-times-_0028CTMC_0029">3.2.6 First Passage Times</a></li>
</ul></li>
</ul></li>
<li><a id="toc-Single-Station-Queueing-Systems-1" href="#Single-Station-Queueing-Systems">4 Single Station Queueing Systems</a>
<ul class="no-bullet">
<li><a id="toc-The-M_002fM_002f1-System-1" href="#The-M_002fM_002f1-System">4.1 The <em>M/M/1</em> System</a></li>
<li><a id="toc-The-M_002fM_002fm-System-1" href="#The-M_002fM_002fm-System">4.2 The <em>M/M/m</em> System</a></li>
<li><a id="toc-The-Erlang_002dB-Formula-1" href="#The-Erlang_002dB-Formula">4.3 The Erlang-B Formula</a></li>
<li><a id="toc-The-Erlang_002dC-Formula-1" href="#The-Erlang_002dC-Formula">4.4 The Erlang-C Formula</a></li>
<li><a id="toc-The-Engset-Formula-1" href="#The-Engset-Formula">4.5 The Engset Formula</a></li>
<li><a id="toc-The-M_002fM_002finf-System-1" href="#The-M_002fM_002finf-System">4.6 The <em>M/M/</em>inf System</a></li>
<li><a id="toc-The-M_002fM_002f1_002fK-System-1" href="#The-M_002fM_002f1_002fK-System">4.7 The <em>M/M/1/K</em> System</a></li>
<li><a id="toc-The-M_002fM_002fm_002fK-System-1" href="#The-M_002fM_002fm_002fK-System">4.8 The <em>M/M/m/K</em> System</a></li>
<li><a id="toc-The-Asymmetric-M_002fM_002fm-System-1" href="#The-Asymmetric-M_002fM_002fm-System">4.9 The Asymmetric <em>M/M/m</em> System</a></li>
<li><a id="toc-The-M_002fG_002f1-System-1" href="#The-M_002fG_002f1-System">4.10 The <em>M/G/1</em> System</a></li>
<li><a id="toc-The-M_002fH_005fm_002f1-System" href="#The-M_002fHm_002f1-System">4.11 The <em>M/H_m/1</em> System</a></li>
</ul></li>
<li><a id="toc-Queueing-Networks-1" href="#Queueing-Networks">5 Queueing Networks</a>
<ul class="no-bullet">
<li><a id="toc-Introduction-to-QNs-1" href="#Introduction-to-QNs">5.1 Introduction to QNs</a></li>
<li><a id="toc-Single-Class-Models-1" href="#Single-Class-Models">5.2 Single Class Models</a>
<ul class="no-bullet">
<li><a id="toc-Open-Networks" href="#Open-Networks">5.2.1 Open Networks</a></li>
<li><a id="toc-Closed-Networks" href="#Closed-Networks">5.2.2 Closed Networks</a></li>
<li><a id="toc-Non-Product_002dForm-QNs-1" href="#Non-Product_002dForm-QNs-1">5.2.3 Non Product-Form QNs</a></li>
</ul></li>
<li><a id="toc-Multiple-Class-Models-1" href="#Multiple-Class-Models">5.3 Multiple Class Models</a>
<ul class="no-bullet">
<li><a id="toc-Open-Networks-1" href="#Open-Networks-1">5.3.1 Open Networks</a></li>
<li><a id="toc-Closed-Networks-1" href="#Closed-Networks-1">5.3.2 Closed Networks</a></li>
<li><a id="toc-Mixed-Networks" href="#Mixed-Networks">5.3.3 Mixed Networks</a></li>
</ul></li>
<li><a id="toc-Generic-Algorithms-1" href="#Generic-Algorithms">5.4 Generic Algorithms</a></li>
<li><a id="toc-Bounds-Analysis-1" href="#Bounds-Analysis">5.5 Bounds Analysis</a></li>
<li><a id="toc-QN-Analysis-Examples-1" href="#QN-Analysis-Examples">5.6 QN Analysis Examples</a>
<ul class="no-bullet">
<li><a id="toc-Closed_002c-Single-Class-Network" href="#Closed_002c-Single-Class-Network">5.6.1 Closed, Single Class Network</a></li>
<li><a id="toc-Open_002c-Single-Class-Network" href="#Open_002c-Single-Class-Network">5.6.2 Open, Single Class Network</a></li>
<li><a id="toc-Closed-Multiclass-Network_002f1" href="#Closed-Multiclass-Network_002f1">5.6.3 Closed Multiclass Network/1</a></li>
<li><a id="toc-Closed-Multiclass-Network_002f2" href="#Closed-Multiclass-Network_002f2">5.6.4 Closed Multiclass Network/2</a></li>
<li><a id="toc-Closed-Multiclass-Network_002f3" href="#Closed-Multiclass-Network_002f3">5.6.5 Closed Multiclass Network/3</a></li>
</ul></li>
</ul></li>
<li><a id="toc-References-1" href="#References">6 References</a></li>
<li><a id="toc-GNU-GENERAL-PUBLIC-LICENSE" href="#Copying">Appendix A GNU GENERAL PUBLIC LICENSE</a></li>
<li><a id="toc-Concept-Index-1" href="#Concept-Index" rel="index">Concept Index</a></li>
<li><a id="toc-Function-Index-1" href="#Function-Index" rel="index">Function Index</a></li>
</ul>
</div>
<span id="Top"></span><div class="header">
<p>
Next: <a href="#Summary" accesskey="n" rel="next">Summary</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="SEC_Top"></span>
<p>This manual documents how to install and run the Queueing package.
It corresponds to version 1.2.8 of the package.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Summary" accesskey="1">Summary</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Installation-and-Getting-Started" accesskey="2">Installation and Getting Started</a></td><td> </td><td align="left" valign="top">Installation of the queueing package.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Markov-Chains" accesskey="3">Markov Chains</a></td><td> </td><td align="left" valign="top">Functions for Markov chains analysis.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Single-Station-Queueing-Systems" accesskey="4">Single Station Queueing Systems</a></td><td> </td><td align="left" valign="top">Functions for single-station queueing systems.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Queueing-Networks" accesskey="5">Queueing Networks</a></td><td> </td><td align="left" valign="top">Functions for queueing networks analysis.
</td></tr>
<tr><td align="left" valign="top">• <a href="#References" accesskey="6">References</a></td><td> </td><td align="left" valign="top">References.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Copying" accesskey="7">Copying</a></td><td> </td><td align="left" valign="top">The GNU General Public License.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Concept-Index" rel="index" accesskey="8">Concept Index</a></td><td> </td><td align="left" valign="top">An item for each concept.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Function-Index" rel="index" accesskey="9">Function Index</a></td><td> </td><td align="left" valign="top">An item for each function.
</td></tr>
</table>
<hr>
<span id="Summary"></span><div class="header">
<p>
Next: <a href="#Installation-and-Getting-Started" accesskey="n" rel="next">Installation and Getting Started</a>, Previous: <a href="#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Summary-1"></span><h2 class="chapter">1 Summary</h2>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#About-the-Queueing-Package" accesskey="1">About the Queueing Package</a></td><td> </td><td align="left" valign="top">What is the Queueing package.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Contributing-Guidelines" accesskey="2">Contributing Guidelines</a></td><td> </td><td align="left" valign="top">How to contribute.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Acknowledgments" accesskey="3">Acknowledgments</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<span id="About-the-Queueing-Package"></span><div class="header">
<p>
Next: <a href="#Contributing-Guidelines" accesskey="n" rel="next">Contributing Guidelines</a>, Up: <a href="#Summary" accesskey="u" rel="up">Summary</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="About-the-Queueing-Package-1"></span><h3 class="section">1.1 About the Queueing Package</h3>
<p>This document describes the <code>queueing</code> package for GNU Octave
(<code>queueing</code> in short). The <code>queueing</code> package, previously
known as <code>qnetworks</code> toolbox, is a collection of functions for
analyzing queueing networks and Markov chains written for GNU
Octave. Specifically, <code>queueing</code> contains functions for analyzing
Jackson networks, open, closed or mixed product-form BCMP networks,
and computing performance bounds. The following algorithms are
available
</p>
<ul>
<li> Convolution for closed, single-class product-form networks
with load-dependent service centers;
</li><li> Exact and approximate Mean Value Analysis (MVA) for single and
multiple class product-form closed networks;
</li><li> MVA for mixed, multiple class product-form networks
with load-independent service centers;
</li><li> Approximate MVA for closed, single-class networks with blocking
(MVABLO algorithm by F. Akyildiz);
</li><li> Asymptotic Bounds, Balanced System Bounds and Geometric Bounds;
</li></ul>
<p><code>queueing</code>
provides functions for analyzing the following types of single-station
queueing systems:
</p>
<ul>
<li> <em>M/M/1</em>
</li><li> <em>M/M/m</em>
</li><li> <em>M/M/\infty</em>
</li><li> <em>M/M/1/k</em> single-server, finite capacity system
</li><li> <em>M/M/m/k</em> multiple-server, finite capacity system
</li><li> Asymmetric <em>M/M/m</em>
</li><li> <em>M/G/1</em> (general service time distribution)
</li><li> <em>M/H_m/1</em> (Hyperexponential service time distribution)
</li></ul>
<p>Functions for Markov chain analysis are also provided (discrete- and
continuous-time chains are supported):
</p>
<ul>
<li> Birth-death processes;
</li><li> Transient and stationary state occupancy probabilities;
</li><li> Mean time to absorption;
</li><li> Expected sojourn times and time-averaged sojourn times;
</li><li> Mean first passage times;
</li></ul>
<p>The <code>queueing</code> package is distributed under the terms of the GNU
General Public License (GPL), version 3 or later
(see <a href="#Copying">Copying</a>). You are encouraged to share this software with
others, and improve this package by contributing additional functions
and reporting bugs. See <a href="#Contributing-Guidelines">Contributing Guidelines</a>.
</p>
<p>If you use the <code>queueing</code> package in a technical paper, please
cite it as:
</p>
<blockquote>
<p>Moreno Marzolla, <em>The qnetworks Toolbox: A Software Package for
Queueing Networks Analysis</em>. Khalid Al-Begain, Dieter Fiems and
William J. Knottenbelt, Editors, Proceedings 17th International
Conference on Analytical and Stochastic Modeling Techniques and
Applications (ASMTA 2010) Cardiff, UK, June 14–16, 2010, volume 6148
of Lecture Notes in Computer Science, Springer, pp. 102–116, ISBN
978-3-642-13567-5
</p></blockquote>
<p>If you use BibTeX, this is the citation block:
</p>
<pre class="verbatim">@inproceedings{queueing,
author = {Moreno Marzolla},
title = {The qnetworks Toolbox: A Software Package for Queueing
Networks Analysis},
booktitle = {Analytical and Stochastic Modeling Techniques and
Applications, 17th International Conference,
ASMTA 2010, Cardiff, UK, June 14-16, 2010. Proceedings},
editor = {Khalid Al-Begain and Dieter Fiems and William J. Knottenbelt},
year = {2010},
publisher = {Springer},
series = {Lecture Notes in Computer Science},
volume = {6148},
pages = {102--116},
ee = {http://dx.doi.org/10.1007/978-3-642-13568-2_8},
isbn = {978-3-642-13567-5}
}
</pre>
<p>An early draft of the paper above is available as Technical Report
<a href="https://www.moreno.marzolla.name/publications/papers/UBLCS-2010-04.pdf">UBLCS-2010-04</a>, February 2010, Department of Computer Science,
University of Bologna, Italy.
</p>
<hr>
<span id="Contributing-Guidelines"></span><div class="header">
<p>
Next: <a href="#Acknowledgments" accesskey="n" rel="next">Acknowledgments</a>, Previous: <a href="#About-the-Queueing-Package" accesskey="p" rel="prev">About the Queueing Package</a>, Up: <a href="#Summary" accesskey="u" rel="up">Summary</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Contributing-Guidelines-1"></span><h3 class="section">1.2 Contributing Guidelines</h3>
<p>Contributions and bug reports are <em>always</em> welcome. If you want
to contribute to the <code>queueing</code> package, here are some
guidelines:
</p>
<ul>
<li> If you are contributing a new function, please embed proper
documentation within the function itself. The documentation must be in
<code>texinfo</code> format, so that it can be extracted and included into
the printable manual. See the existing functions for the documentation
style.
</li><li> Make sure that each new function
validates its input parameters. For example, a function accepting
vectors should check whether the dimensions match.
</li><li> Provide bibliographic references for each new algorithm you
contribute. Document any significant difference from the
reference. Update the <samp>doc/references.txi</samp> file if appropriate.
</li><li> Include test and demo blocks.
Test blocks are particularly important, since most algorithms are
tricky to implement correctly. If appropriate, test blocks should also
verify that the function fails on incorrect inputs.
</li></ul>
<p>Send your contribution to Moreno Marzolla
(<a href="mailto:moreno.marzolla@unibo.it">moreno.marzolla@unibo.it</a>). If you are a user of this
package and find it useful, let me know by dropping me a line. Thanks.
</p>
<hr>
<span id="Acknowledgments"></span><div class="header">
<p>
Previous: <a href="#Contributing-Guidelines" accesskey="p" rel="prev">Contributing Guidelines</a>, Up: <a href="#Summary" accesskey="u" rel="up">Summary</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Acknowledgments-1"></span><h3 class="section">1.3 Acknowledgments</h3>
<p>The following people (listed alphabetically) contributed to the
<code>queueing</code> package, either by providing feedback, reporting bugs
or contributing code: Philip Carinhas, Phil Colbourn, Diego Didona,
Yves Durand, Marco Guazzone, Dmitry Kolesnikov, Michele Mazzucco,
Marco Paolieri.
</p>
<hr>
<span id="Installation-and-Getting-Started"></span><div class="header">
<p>
Next: <a href="#Markov-Chains" accesskey="n" rel="next">Markov Chains</a>, Previous: <a href="#Summary" accesskey="p" rel="prev">Summary</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Installation-and-Getting-Started-1"></span><h2 class="chapter">2 Installation and Getting Started</h2>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Installation-through-Octave-package-management-system" accesskey="1">Installation through Octave package management system</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Manual-installation" accesskey="2">Manual installation</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Development-sources" accesskey="3">Development sources</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Testing-and-Demos" accesskey="4">Testing and Demos</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Naming-Conventions" accesskey="5">Naming Conventions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Quick-start-Guide" accesskey="6">Quick start Guide</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<span id="Installation-through-Octave-package-management-system"></span><div class="header">
<p>
Next: <a href="#Manual-installation" accesskey="n" rel="next">Manual installation</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Installation-through-Octave-package-management-system-1"></span><h3 class="section">2.1 Installation through Octave package management system</h3>
<p>The most recent version of <code>queueing</code> is 1.2.8 and can
be downloaded from
</p>
<p><a href="https://gnu-octave.github.io/packages/queueing/">https://gnu-octave.github.io/packages/queueing/</a>
</p>
<p>Additional information can be found at
</p>
<p><a href="https://www.moreno.marzolla.name/software/queueing/">https://www.moreno.marzolla.name/software/queueing/</a>
</p>
<p>To install <code>queueing</code>, follow these steps:
</p>
<ol>
<li> If you have a recent version of GNU Octave and a network connection,
you can install <code>queueing</code> from Octave command prompt using this
command:
<div class="example">
<pre class="example">octave:1> <kbd>pkg install pkg install "https://github.com/mmarzolla/queueing/releases/download/1.2.8/queueing-1.2.8.tar.gz"</kbd>
</pre></div>
<p>The command above will download and install the latest version of the
<code>queueing</code> package from the source repository, and install it on
your machine.
</p>
<p>If you do not have root access, you can perform a local install with:
</p>
<div class="example">
<pre class="example">octave:1> <kbd>pkg install -local "https://github.com/mmarzolla/queueing/releases/download/1.2.8/queueing-1.2.8.tar.gz"</kbd>
</pre></div>
<p>This will install <code>queueing</code> in your home directory, and the
package will be available to the current user only.
</p>
</li><li> Alternatively, you can first download the <code>queueing</code> tarball; to
install the package in the system-wide location issue this command at
the Octave prompt:
<div class="example">
<pre class="example">octave:1> <kbd>pkg install <em>queueing-1.2.8.tar.gz</em></kbd>
</pre></div>
<p>(you may need to start Octave as root in order to allow the
installation to copy the files to the target locations). After this,
all functions will be available each time Octave starts, without the
need to tweak the search path.
</p>
<p>If you do not have root access, you can do a local install using:
</p>
<div class="example">
<pre class="example">octave:1> <kbd>pkg install -local queueing-1.2.8.tar.gz</kbd>
</pre></div>
</li><li> Use the <kbd>pkg list</kbd> command at the Octave prompt to check that the
<code>queueing</code> package has been succesfully installed; you should see
something like:
<div class="example">
<pre class="example">octave:1><kbd>pkg list queueing</kbd>
Package Name | Version | Installation directory
--------------+---------+-----------------------
queueing | 1.2.8 | /home/moreno/octave/queueing-1.2.8
</pre></div>
</li><li> Starting from version 1.1.1, <code>queueing</code> is no longer
automatically loaded on Octave start. To make the functions
available for use, you need to issue the command
<div class="example">
<pre class="example">octave:1><kbd>pkg load queueing</kbd>
</pre></div>
<p>at the Octave prompt. To automatically load <code>queueing</code> each time
Octave starts, you can add the command above to the startup script
(usually, <samp>~/.octaverc</samp> on Unix systems).
</p>
</li><li> To completely remove <code>queueing</code> from your system, use the
<kbd>pkg uninstall</kbd> command:
<div class="example">
<pre class="example">octave:1> <kbd>pkg uninstall queueing</kbd>
</pre></div>
</li></ol>
<hr>
<span id="Manual-installation"></span><div class="header">
<p>
Next: <a href="#Development-sources" accesskey="n" rel="next">Development sources</a>, Previous: <a href="#Installation-through-Octave-package-management-system" accesskey="p" rel="prev">Installation through Octave package management system</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Manual-installation-1"></span><h3 class="section">2.2 Manual installation</h3>
<p>If you want to manually install <code>queueing</code> in a custom location,
you can download the tarball and unpack it somewhere:
</p>
<div class="example">
<pre class="example"><kbd>tar xvfz queueing-1.2.8.tar.gz</kbd>
<kbd>cd queueing-1.2.8/</kbd>
</pre></div>
<p>Copy all <code>.m</code> files from the <samp>inst/</samp> directory to some
target location. Then, start Octave with the <samp>-p</samp> option to add
the target location to the search path, so that Octave will find all
<code>queueing</code> functions automatically:
</p>
<div class="example">
<pre class="example"><kbd>octave -p <em>/path/to/queueing</em></kbd>
</pre></div>
<p>For example, if all <code>queueing</code> m-files are in
<samp>/usr/local/queueing</samp>, you can start Octave as follows:
</p>
<div class="example">
<pre class="example"><kbd>octave -p <em>/usr/local/queueing</em></kbd>
</pre></div>
<p>If you want, you can add the following line to <samp>~/.octaverc</samp>:
</p>
<div class="example">
<pre class="example"><kbd>addpath("<em>/path/to/queueing</em>");</kbd>
</pre></div>
<p>so that the path <samp>/path/to/queueing</samp> is automatically
added to the search path each time Octave is started, and you no
longer need to specify the <samp>-p</samp> option on the command line.
</p>
<hr>
<span id="Development-sources"></span><div class="header">
<p>
Next: <a href="#Testing-and-Demos" accesskey="n" rel="next">Testing and Demos</a>, Previous: <a href="#Manual-installation" accesskey="p" rel="prev">Manual installation</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Development-sources-1"></span><h3 class="section">2.3 Development sources</h3>
<p>The source code of the <code>queueing</code> package can be found in the
Git repository at the URL:
</p>
<p><a href="https://github.com/mmarzolla/queueing">https://github.com/mmarzolla/queueing</a>
</p>
<p>The source distribution contains additional development files that are
not present in the installation tarball. This section briefly
describes the content of the source tree. This is only relevant for
developers who want to modify the code or the documentation.
</p>
<p>The source distribution contains the following directories:
</p>
<dl compact="compact">
<dt><samp>doc/</samp></dt>
<dd><p>Documentation sources. Most of the documentation is extracted from the
comment blocks of function files from the <samp>inst/</samp> directory.
</p>
</dd>
<dt><samp>inst/</samp></dt>
<dd><p>This directory contains the <tt>m</tt>-files which implement the
various algorithms provided by <code>queueing</code>. As a notational
convention, the names of functions for Queueing Networks begin with
the ‘<samp>qn</samp>’ prefix; the name of functions for Continuous-Time Markov
Chains (CTMCs) begin with the ‘<samp>ctmc</samp>’ prefix, and the names of
functions for Discrete-Time Markov Chains (DTMCs) begin with the
‘<samp>dtmc</samp>’ prefix.
</p>
</dd>
<dt><samp>test/</samp></dt>
<dd><p>This directory contains the scripts used to run all function tests.
</p>
</dd>
<dt><samp>devel/</samp></dt>
<dd><p>This directory contains functions that are either not working
properly, or need additional testing before they are moved to the
<samp>inst/</samp> directory.
</p>
</dd>
</dl>
<p>The <code>queueing</code> package ships with a Makefile which can be used to
produce the documentation (in PDF and HTML format), and automatically
execute all tests. The following targets are defined:
</p>
<dl compact="compact">
<dt><code>all</code></dt>
<dd><p>Running ‘<samp>make</samp>’ (or ‘<samp>make all</samp>’) on the top-level directory
builds the programs used to extract the documentation from the
comments embedded in the m-files, and then produce the
documentation in PDF and HTML format (<samp>doc/queueing.pdf</samp> and
<samp>doc/queueing.html</samp>, respectively).
</p>
</dd>
<dt><code>check</code></dt>
<dd><p>Running ‘<samp>make check</samp>’ will execute all tests contained in the
m-files. If you modify the code of any function in the
<samp>inst/</samp> directory, you should run the tests to ensure that no
errors have been introduced. You are also encouraged to contribute new
tests, especially for functions that are not adequately validated.
</p>
</dd>
<dt><code>clean</code></dt>
<dt><code>distclean</code></dt>
<dt><code>dist</code></dt>
<dd><p>The ‘<samp>make clean</samp>’, ‘<samp>make distclean</samp>’ and ‘<samp>make dist</samp>’
commands are used to clean up the source directory and prepare the
distribution archive in compressed tar format.
</p>
</dd>
</dl>
<hr>
<span id="Testing-and-Demos"></span><div class="header">
<p>
Next: <a href="#Naming-Conventions" accesskey="n" rel="next">Naming Conventions</a>, Previous: <a href="#Development-sources" accesskey="p" rel="prev">Development sources</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Testing-and-Demos-1"></span><h3 class="section">2.4 Testing and Demos</h3>
<p>The <code>queueing</code> package makes extensive use of test and demo
blocks. These are GNU Octave features that allow tests and demos
to be embedded within the source code of m-files. Multiple test
blocks can be defined using the ‘<samp>%!test</samp>’ directive:
</p>
<div class="example">
<pre class="example">%!test
%! # test code
%!
%!test
%! # another test code
</pre></div>
<p>Test blocks rely on the <code>assert</code> built-in function to check
che correctness of computation, e.g., by comparing the results with
known “good” values or by cross-checking with other functions. The
tests for a given function can be manually executed with the
<code>test</code> command: for example, <code>test("qsmm1")</code> executes all
tests in the script file <samp>qsmm1.m</samp> and prints a diagnostic
message:
</p>
<div class="example">
<pre class="example"><kbd>test("qsmm1");</kbd>
-| PASSES 3 out of 3 tests
</pre></div>
<p>A quick way to run all tests for all functions in the <code>queueing</code>
package is using the <code>runtests</code> built-in command at the GNU
Octave prompt, passing as parameter the full path where the <code>.m</code>
files are stored:
</p>
<div class="example">
<pre class="example"><kbd>runtests("/path/to/queueing/inst");</kbd>
-| Processing files in /path/to/queueing/inst:
-|
-| ctmc.m .............................................. PASS 9/9
-| ctmcbd.m ............................................ PASS 1/1
…
</pre></div>
<p>A better way for Unix users is to use the <samp>Makefile</samp> provided in
the top-level directory of the development sources. As described in
<a href="#Development-sources">Development sources</a>, the <samp>Makefile</samp> defines a target
‘<samp>check</samp>’ that runs all tests over all functions in the
<samp>inst/</samp> directory. Simply run the
</p>
<div class="example">
<pre class="example"><kbd>make check</kbd>
</pre></div>
<p>command from the Unix shell to run all tests.
</p>
<p>The source files include small demos that show how the function
defined there can be used. Similarly to test blocks, demos are
embedded in the source files using the ‘<samp>%!demo</samp>’ directive. Demos
can be displayed and run using the <code>demo</code> built-in command
at the GNU Octave prompt:
</p>
<div class="example">
<pre class="example"><kbd>demo("qsmm1");</kbd>
</pre><pre class="verbatim"> ## Given a M/M/1 queue, compute the steady-state probability pk
## of having k requests in the systen.
lambda = 0.2;
mu = 0.25;
k = 0:10;
pk = qsmm1(lambda, mu, k);
plot(k, pk, "-o", "linewidth", 2);
xlabel("N. of requests (k)");
ylabel("p_k");
title(sprintf("M/M/1 system, \\lambda = %g, \\mu = %g", lambda, mu));
</pre></div>
<hr>
<span id="Naming-Conventions"></span><div class="header">
<p>
Next: <a href="#Quick-start-Guide" accesskey="n" rel="next">Quick start Guide</a>, Previous: <a href="#Testing-and-Demos" accesskey="p" rel="prev">Testing and Demos</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Naming-Conventions-1"></span><h3 class="section">2.5 Naming Conventions</h3>
<p>Most of the functions in the <code>queueing</code> package obey a common
naming convention. Function names are made of several parts; the first
part is a prefix which indicates the class of problems the function
addresses:
</p>
<dl compact="compact">
<dt><strong>ctmc-</strong></dt>
<dd><p>Functions for continuous-time Markov chains
</p>
</dd>
<dt><strong>dtmc-</strong></dt>
<dd><p>Functions for discrete-time Markov chains
</p>
</dd>
<dt><strong>qs-</strong></dt>
<dd><p>Functions for analyzing single-station queueing systems (individual
service centers)
</p>
</dd>
<dt><strong>qn-</strong></dt>
<dd><p>Functions for analyzing queueing networks
</p>
</dd>
</dl>
<p>Functions dealing with Markov chains start with either the <code>ctmc</code>
or <code>dtmc</code> prefix; the prefix is optionally followed by an
additional string which hints at what the function does:
</p>
<dl compact="compact">
<dt><strong>-bd</strong></dt>
<dd><p>Birth-Death process
</p>
</dd>
<dt><strong>-mtta</strong></dt>
<dd><p>Mean Time to Absorption
</p>
</dd>
<dt><strong>-fpt</strong></dt>
<dd><p>First Passage Times
</p>
</dd>
<dt><strong>-exps</strong></dt>
<dd><p>Expected Sojourn Times
</p>
</dd>
<dt><strong>-taexps</strong></dt>
<dd><p>Time-Averaged Expected Sojourn Times
</p>
</dd>
</dl>
<p>For example, function <code>ctmcbd</code> returns the infinitesimal
generator matrix for a continuous birth-death process, while
<code>dtmcbd</code> returns the transition probability matrix for a discrete
birth-death process. Note that there exist functions <code>ctmc</code> and
<code>dtmc</code> (without any suffix) that compute steady-state and
transient state occupancy probabilities for CTMCs and DTMCs,
respectively. See <a href="#Markov-Chains">Markov Chains</a>.
</p>
<p>Functions whose name starts with <code>qs-</code> deal with single station
queueing systems. The suffix describes the type of system, e.g.,
<code>qsmm1</code> for <em>M/M/1</em>, <code>qnmmm</code> for <em>M/M/m</em> and so
on. See <a href="#Single-Station-Queueing-Systems">Single Station Queueing Systems</a>.
</p>
<p>Finally, functions whose name starts with <code>qn-</code> deal with
queueing networks. The character that follows indicates whether the
function handles open (<code>'o'</code>) or closed (<code>'c'</code>) networks,
and whether there is a single customer class (<code>'s'</code>) or multiple
classes (<code>'m'</code>). The string <code>mix</code> indicates that the
function supports mixed networks with both open and closed customer
classes.
</p>
<dl compact="compact">
<dt><strong>-os-</strong></dt>
<dd><p>Open, single-class network: open network with a single class of customers
</p>
</dd>
<dt><strong>-om-</strong></dt>
<dd><p>Open, multiclass network: open network with multiple job classes
</p>
</dd>
<dt><strong>-cs-</strong></dt>
<dd><p>Closed, single-class network
</p>
</dd>
<dt><strong>-cm-</strong></dt>
<dd><p>Closed, multiclass network
</p>
</dd>
<dt><strong>-mix-</strong></dt>
<dd><p>Mixed network with open and closed classes of customers
</p>
</dd>
</dl>
<p>The last part of the function name indicates the algorithm implemented
by the function. See <a href="#Queueing-Networks">Queueing Networks</a>.
</p>
<dl compact="compact">
<dt><strong>-aba</strong></dt>
<dd><p>Asymptotic Bounds Analysis
</p>
</dd>
<dt><strong>-bsb</strong></dt>
<dd><p>Balanced System Bounds
</p>
</dd>
<dt><strong>-gb</strong></dt>
<dd><p>Geometric Bounds
</p>
</dd>
<dt><strong>-pb</strong></dt>
<dd><p>PB Bounds
</p>
</dd>
<dt><strong>-cb</strong></dt>
<dd><p>Composite Bounds (CB)
</p>
</dd>
<dt><strong>-mva</strong></dt>
<dd><p>Mean Value Analysis (MVA) algorithm
</p>
</dd>
<dt><strong>-cmva</strong></dt>
<dd><p>Conditional MVA
</p>
</dd>
<dt><strong>-mvald</strong></dt>
<dd><p>MVA with general load-dependent servers
</p>
</dd>
<dt><strong>-mvaap</strong></dt>
<dd><p>Approximate MVA
</p>
</dd>
<dt><strong>-mvablo</strong></dt>
<dd><p>MVABLO approximation for blocking queueing networks
</p>
</dd>
<dt><strong>-conv</strong></dt>
<dd><p>Convolution algorithm
</p>
</dd>
<dt><strong>-convld</strong></dt>
<dd><p>Convolution algorithm with general load-dependent servers
</p>
</dd>
</dl>
<span id="index-deprecated-functions"></span>
<p>Some deprecated functions may be present in the <code>queueing</code>
package; generally, these are functions that have been renamed, and
the old name is kept for a while for backward compatibility.
Deprecated functions are not documented and will be removed in future
releases. Calling a deprecated functions displays a warning message
that appears only once per session. The warning message can be turned
off with the command:
</p>
<div class="example">
<pre class="example">octave:1> <kbd>warning ("off", "qn:deprecated-function");</kbd>
</pre></div>
<p>However, you are strongly recommended to update your code to the new
API. To help catching usages of deprecated functions, you can
transform warnings into errors so that your application stops
immediately:
</p>
<div class="example">
<pre class="example">octave:1> <kbd>warning ("error", "qn:deprecated-function");</kbd>
</pre></div>
<hr>
<span id="Quick-start-Guide"></span><div class="header">
<p>
Previous: <a href="#Naming-Conventions" accesskey="p" rel="prev">Naming Conventions</a>, Up: <a href="#Installation-and-Getting-Started" accesskey="u" rel="up">Installation and Getting Started</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Quick-start-Guide-1"></span><h3 class="section">2.6 Quick start Guide</h3>
<p>You can use all functions by simply invoking their name with the
appropriate parameters; an error is shown in case of missing/wrong
parameters. Extensive documentation is provided for each function, and
can be displayed with the <code>help</code> command. For example:
</p>
<div class="example">
<pre class="example">octave:2> <kbd>help qncsmvablo</kbd>
</pre></div>
<p>shows the documentation for the <code>qncsmvablo</code> function.
Additional information can be found in the <code>queueing</code> manual,
that is available in PDF format in <samp>doc/queueing.pdf</samp> and in HTML
format in <samp>doc/queueing.html</samp>.
</p>
<p>Ad sicussed above, many functions have demo blocks showing usage
examples. To execute the demos for the <code>qnclosed</code> function,
use the <code>demo</code> command:
</p>
<div class="example">
<pre class="example">octave:4> <kbd>demo qnclosed</kbd>
</pre></div>
<p>We now illustrate a few examples of how the <code>queueing</code> package
can be used. More examples are provided in the manual.
</p>
<p><strong>Example 1</strong>
Compute the stationary state occupancy probabilities of a continuous-time
Markov chain with infinitesimal generator matrix
</p>
<div class="example">
<pre class="example"> / -0.8 0.6 0.2 \
Q = | 0.3 -0.7 0.4 |
\ 0.2 0.2 -0.4 /
</pre></div>
<div class="example">
<pre class="example">Q = [ -0.8 0.6 0.2; ...
0.3 -0.7 0.4; ...
0.2 0.2 -0.4 ];
q = ctmc(Q)
⇒ q = 0.23256 0.32558 0.44186
</pre></div>
<p><strong>Example 2</strong>
Compute the transient state occupancy probability after <em>n=3</em>
transitions of a three state discrete-time birth-death process, with
birth probabilities <em>\lambda_{01} = 0.3</em> and <em>\lambda_{12} =
0.5</em> and death probabilities <em>\mu_{10} = 0.5</em> and <em>\mu_{21}
= 0.7</em>, assuming that the system is initially in state zero (i.e., the
initial state occupancy probabilities are <em>[1, 0, 0]</em>).
</p>
<div class="example">
<pre class="example">n = 3;
p0 = [1 0 0];
P = dtmcbd( [0.3 0.5], [0.5 0.7] );
p = dtmc(P,n,p0)
⇒ p = 0.55300 0.29700 0.15000
</pre></div>
<p><strong>Example 3</strong>
Compute server utilization, response time, mean number of requests and
throughput of a closed queueing network with <em>N=4</em> requests and
three <em>M/M/1</em>–FCFS queues with mean service times <em>S
= [1.0, 0.8, 1.4]</em> and average number of visits <em>V = [1.0,
0.8, 0.8]</em>
</p>
<div class="example">
<pre class="example">S = [1.0 0.8 1.4];
V = [1.0 0.8 0.8];
N = 4;
[U R Q X] = qncsmva(N, S, V)
⇒
U = 0.70064 0.44841 0.78471
R = 2.1030 1.2642 3.2433
Q = 1.47346 0.70862 1.81792
X = 0.70064 0.56051 0.56051
</pre></div>
<p><strong>Example 4</strong>
Compute server utilization, response time, mean number of requests and
throughput of an open queueing network with three <em>M/M/1</em>–FCFS
queues with mean service times <em>S = [1.0, 0.8, 1.4]</em> and
average number of visits <em>V = [1.0, 0.8, 0.8]</em>. The overall
arrival rate is <em>\lambda = 0.8</em> requests/second.
</p>
<div class="example">
<pre class="example">S = [1.0 0.8 1.4];
V = [1.0 0.8 0.8];
lambda = 0.8;
[U R Q X] = qnos(lambda, S, V)
⇒
U = 0.80000 0.51200 0.89600
R = 5.0000 1.6393 13.4615
Q = 4.0000 1.0492 8.6154
X = 0.80000 0.64000 0.64000
</pre></div>
<hr>
<span id="Markov-Chains"></span><div class="header">
<p>
Next: <a href="#Single-Station-Queueing-Systems" accesskey="n" rel="next">Single Station Queueing Systems</a>, Previous: <a href="#Installation-and-Getting-Started" accesskey="p" rel="prev">Installation and Getting Started</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Markov-Chains-1"></span><h2 class="chapter">3 Markov Chains</h2>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Discrete_002dTime-Markov-Chains" accesskey="1">Discrete-Time Markov Chains</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Continuous_002dTime-Markov-Chains" accesskey="2">Continuous-Time Markov Chains</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<span id="Discrete_002dTime-Markov-Chains"></span><div class="header">
<p>
Next: <a href="#Continuous_002dTime-Markov-Chains" accesskey="n" rel="next">Continuous-Time Markov Chains</a>, Up: <a href="#Markov-Chains" accesskey="u" rel="up">Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Discrete_002dTime-Markov-Chains-1"></span><h3 class="section">3.1 Discrete-Time Markov Chains</h3>
<p>Let <em>X_0, X_1, …, X_n, … </em> be a sequence of random
variables defined over the discrete state space <em>1, 2,
…</em>. The sequence <em>X_0, X_1, …, X_n, …</em> is a
<em>stochastic process</em> with discrete time <em>0, 1, 2,
…</em>. A <em>Markov chain</em> is a stochastic process <em>{X_n,
n=0, 1, …}</em> which satisfies the following Markov property:
</p>
<p><em>P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, …, X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)</em>
</p>
<p>which basically means that the probability that the system is in
a particular state at time <em>n+1</em> only depends on the state the
system was at time <em>n</em>.
</p>
<p>The evolution of a Markov chain with finite state space <em>{1,
…, N}</em> can be fully described by a stochastic matrix <em>{\bf
P}(n) = [ P_{i,j}(n) ]</em> where <em>P_{i, j}(n) = P( X_{n+1} = j\
|\ X_n = i )</em>. If the Markov chain is homogeneous (that is, the
transition probability matrix <em>{\bf P}(n)</em> is time-independent),
we can write <em>{\bf P} = [P_{i, j}]</em>, where <em>P_{i, j} = P(
X_{n+1} = j\ |\ X_n = i )</em> for all <em>n=0, 1, …</em>.
</p>
<span id="index-stochastic-matrix"></span>
<p>The transition probability matrix <em>\bf P</em> must be a
<em>stochastic matrix</em>, meaning that it must satisfy the following
two properties:
</p>
<ol>
<li> <em>P_{i, j} ≥ 0</em> for all <em>1 ≤ i, j ≤ N</em>;
</li><li> <em>\sum_{j=1}^N P_{i,j} = 1</em> for all <em>i</em>
</li></ol>
<p>Property 1 requires that all probabilities are nonnegative; property 2
requires that the outgoing transition probabilities from any state
<em>i</em> sum to one.
</p>
<span id="doc_002ddtmcchkP"></span>
<dl>
<dt id="index-dtmcchkP">Function File: <em>[<var>r</var> <var>err</var>] =</em> <strong>dtmcchkP</strong> <em>(<var>P</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-discrete-time"></span>
<span id="index-DTMC"></span>
<span id="index-discrete-time-Markov-chain"></span>
<p>Check whether <var>P</var> is a valid transition probability matrix.
</p>
<p>If <var>P</var> is valid, <var>r</var> is the size (number of rows or columns)
of <var>P</var>. If <var>P</var> is not a transition probability matrix,
<var>r</var> is set to zero, and <var>err</var> to an appropriate error string.
</p>
</dd></dl>
<p>A DTMC is <em>irreducible</em> if every state can be reached with
non-zero probability starting from every other state.
</p>
<span id="doc_002ddtmcisir"></span>
<dl>
<dt id="index-dtmcisir">Function File: <em>[<var>r</var> <var>s</var>] =</em> <strong>dtmcisir</strong> <em>(<var>P</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-discrete-time-1"></span>
<span id="index-discrete-time-Markov-chain-1"></span>
<span id="index-DTMC-1"></span>
<span id="index-irreducible-Markov-chain"></span>
<p>Check if <var>P</var> is irreducible, and identify Strongly Connected
Components (SCC) in the transition graph of the DTMC with transition
matrix <var>P</var>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>transition probability from state <em>i</em> to state <em>j</em>.
<var>P</var> must be an <em>N \times N</em> stochastic matrix.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>r</var></code></dt>
<dd><p>1 if <var>P</var> is irreducible (i.e., the state transition graph is
strongly connected), 0 otherwise (scalar)
</p>
</dd>
<dt><code><var>s</var>(i)</code></dt>
<dd><p>strongly connected component (SCC) that state <em>i</em> belongs to
(vector of length <em>N</em>). SCCs are numbered <em>1, 2, …</em>.
The number of SCCs is <code>max(s)</code>. If the graph is
strongly connected, then there is a single SCC and the predicate
<code>all(s == 1)</code> evaluates to true
</p>
</dd>
</dl>
</dd></dl>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#State-occupancy-probabilities-_0028DTMC_0029" accesskey="1">State occupancy probabilities (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Birth_002ddeath-process-_0028DTMC_0029" accesskey="2">Birth-death process (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Expected-number-of-visits-_0028DTMC_0029" accesskey="3">Expected number of visits (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029" accesskey="4">Time-averaged expected sojourn times (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Mean-time-to-absorption-_0028DTMC_0029" accesskey="5">Mean time to absorption (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#First-passage-times-_0028DTMC_0029" accesskey="6">First passage times (DTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<span id="State-occupancy-probabilities-_0028DTMC_0029"></span><div class="header">
<p>
Next: <a href="#Birth_002ddeath-process-_0028DTMC_0029" accesskey="n" rel="next">Birth-death process (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="State-occupancy-probabilities"></span><h4 class="subsection">3.1.1 State occupancy probabilities</h4>
<p>Given a discrete-time Markov chain with state space <em>{1,
…, N}</em>, we denote with <em>{\bf \pi}(n) = \left[\pi_1(n),
… \pi_N(n) \right]</em> the <em>state occupancy probability
vector</em> at step <em>n = 0, 1, …</em>. <em>\pi_i(n)</em>
is the probability that the system is in state <em>i</em> after <em>n</em>
transitions.
</p>
<p>Given the transition probability matrix <em>\bf P</em> and the initial
state occupancy probability vector <em>{\bf \pi}(0) =
\left[\pi_1(0), …, \pi_N(0)\right]</em>, <em>{\bf \pi}(n)</em> can be
computed as:
</p>
<p><em>\pi(n) = \pi(0) P^n</em>
</p>
<p>Under certain conditions, there exists a <em>stationary state
occupancy probability</em> <em>{\bf \pi} = \lim_{n \rightarrow +\infty}
{\bf \pi}(n)</em>, which is independent from <em>{\bf \pi}(0)</em>. The
vector <em>\bf \pi</em> is the solution of the following linear system:
</p>
<div class="example">
<pre class="example">/
| \pi P = \pi
| \pi 1^T = 1
\
</pre></div>
<p>where <em>\bf 1</em> is the row vector of ones, and <em>( \cdot )^T</em>
the transpose operator.
</p>
<span id="doc_002ddtmc"></span>
<dl>
<dt id="index-dtmc">Function File: <em><var>p</var> =</em> <strong>dtmc</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-dtmc-1">Function File: <em><var>p</var> =</em> <strong>dtmc</strong> <em>(<var>P</var>, <var>n</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-discrete-time-2"></span>
<span id="index-discrete-time-Markov-chain-2"></span>
<span id="index-DTMC-2"></span>
<span id="index-Markov-chain_002c-stationary-probabilities"></span>
<span id="index-Markov-chain_002c-transient-probabilities"></span>
<p>Compute stationary or transient state occupancy probabilities for a discrete-time Markov chain.
</p>
<p>With a single argument, compute the stationary state occupancy
probabilities <code><var>p</var>(1), …, <var>p</var>(N)</code> for a
discrete-time Markov chain with finite state space <em>{1, …,
N}</em> and with <em>N \times N</em> transition matrix
<var>P</var>. With three arguments, compute the transient state occupancy
probabilities <code><var>p</var>(1), …, <var>p</var>(N)</code> that the system is in
state <em>i</em> after <var>n</var> steps, given initial occupancy
probabilities <var>p0</var>(1), …, <var>p0</var>(N).
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>transition probabilities from state <em>i</em> to state <em>j</em>.
<var>P</var> must be an <em>N \times N</em> irreducible stochastic matrix,
meaning that the sum of each row must be 1 (<em>\sum_{j=1}^N
P_{i, j} = 1</em>), and the rank of <var>P</var> must be <em>N</em>.
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of transitions after which state occupancy probabilities are computed
(scalar, <em>n ≥ 0</em>)
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>probability that at step 0 the system is in state <em>i</em> (vector
of length <em>N</em>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>p</var>(i)</code></dt>
<dd><p>If this function is called with a single argument, <code><var>p</var>(i)</code>
is the steady-state probability that the system is in state <em>i</em>.
If this function is called with three arguments, <code><var>p</var>(i)</code>
is the probability that the system is in state <em>i</em>
after <var>n</var> transitions, given the probabilities
<code><var>p0</var>(i)</code> that the initial state is <em>i</em>.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> ctmc.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>The following example is from <a href="#GrSn97">GrSn97</a>. Let us consider a maze
with nine rooms, as shown in the following figure
</p>
<div class="example">
<pre class="example">+-----+-----+-----+
| | | |
| 1 2 3 |
| | | |
+- -+- -+- -+
| | | |
| 4 5 6 |
| | | |
+- -+- -+- -+
| | | |
| 7 8 9 |
| | | |
+-----+-----+-----+
</pre></div>
<p>A mouse is placed in one of the rooms and can wander around. At each
step, the mouse moves from the current room to a neighboring one with
equal probability. For example, if it is in room 1, it can move to
room 2 and 4 with probability <em>1/2</em>, respectively; if the mouse
is in room 8, it can move to either 7, 5 or 9 with probability
<em>1/3</em>.
</p>
<p>The transition probabilities <em>P_{i, j}</em> from room <em>i</em> to
room <em>j</em> can be summarized in the following matrix:
</p>
<div class="example">
<pre class="example"> / 0 1/2 0 1/2 0 0 0 0 0 \
| 1/3 0 1/3 0 1/3 0 0 0 0 |
| 0 1/2 0 0 0 1/2 0 0 0 |
| 1/3 0 0 0 1/3 0 1/3 0 0 |
P = | 0 1/4 0 1/4 0 1/4 0 1/4 0 |
| 0 0 1/3 0 1/3 0 0 0 1/3 |
| 0 0 0 1/2 0 0 0 1/2 0 |
| 0 0 0 0 1/3 0 1/3 0 1/3 |
\ 0 0 0 0 0 1/2 0 1/2 0 /
</pre></div>
<p>The stationary state occupancy probabilities can then be computed
with the following code:
</p>
<div class="example">
<pre class="verbatim"> P = zeros(9,9);
P(1,[2 4] ) = 1/2;
P(2,[1 5 3] ) = 1/3;
P(3,[2 6] ) = 1/2;
P(4,[1 5 7] ) = 1/3;
P(5,[2 4 6 8]) = 1/4;
P(6,[3 5 9] ) = 1/3;
P(7,[4 8] ) = 1/2;
P(8,[7 5 9] ) = 1/3;
P(9,[6 8] ) = 1/2;
p = dtmc(P);
disp(p)
</pre><pre class="example"> ⇒ 0.083333 0.125000 0.083333 0.125000
0.166667 0.125000 0.083333 0.125000
0.083333
</pre></div>
<hr>
<span id="Birth_002ddeath-process-_0028DTMC_0029"></span><div class="header">
<p>
Next: <a href="#Expected-number-of-visits-_0028DTMC_0029" accesskey="n" rel="next">Expected number of visits (DTMC)</a>, Previous: <a href="#State-occupancy-probabilities-_0028DTMC_0029" accesskey="p" rel="prev">State occupancy probabilities (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Birth_002ddeath-process"></span><h4 class="subsection">3.1.2 Birth-death process</h4>
<span id="doc_002ddtmcbd"></span>
<dl>
<dt id="index-dtmcbd">Function File: <em><var>P</var> =</em> <strong>dtmcbd</strong> <em>(<var>b</var>, <var>d</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-discrete-time-3"></span>
<span id="index-DTMC-3"></span>
<span id="index-discrete-time-Markov-chain-3"></span>
<span id="index-birth_002ddeath-process_002c-DTMC"></span>
<p>Returns the transition probability matrix <em>P</em> for a discrete
birth-death process over state space <em>{1, …, N}</em>.
For each <em>i=1, …, (N-1)</em>,
<code><var>b</var>(i)</code> is the transition probability from state
<em>i</em> to <em>(i+1)</em>, and <code><var>d</var>(i)</code> is the transition
probability from state <em>(i+1)</em> to <em>i</em>.
</p>
<p>Matrix <em>\bf P</em> is defined as:
</p>
<div class="example">
<pre class="example">/ \
| 1-b(1) b(1) |
| d(1) (1-d(1)-b(2)) b(2) |
| d(2) (1-d(2)-b(3)) b(3) |
| |
| ... ... ... |
| |
| d(N-2) (1-d(N-2)-b(N-1)) b(N-1) |
| d(N-1) 1-d(N-1) |
\ /
</pre></div>
<p>where <em>\lambda_i</em> and <em>\mu_i</em> are the birth and
death probabilities, respectively.
</p>
<br>
<p><strong>See also:</strong> ctmcbd.
</p>
</dd></dl>
<hr>
<span id="Expected-number-of-visits-_0028DTMC_0029"></span><div class="header">
<p>
Next: <a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029" accesskey="n" rel="next">Time-averaged expected sojourn times (DTMC)</a>, Previous: <a href="#Birth_002ddeath-process-_0028DTMC_0029" accesskey="p" rel="prev">Birth-death process (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Expected-Number-of-Visits"></span><h4 class="subsection">3.1.3 Expected Number of Visits</h4>
<p>Given a <em>N</em> state discrete-time Markov chain with transition
matrix <em>\bf P</em> and an integer <em>n ≥ 0</em>, we let
<em>L_i(n)</em> be the the expected number of visits to state <em>i</em>
during the first <em>n</em> transitions. The vector <em>{\bf L}(n) =
\left[ L_1(n), …, L_N(n) \right]</em> is defined as
</p>
<div class="example">
<pre class="example"> n n
___ ___
\ \ i
L(n) = > pi(i) = > pi(0) P
/___ /___
i=0 i=0
</pre></div>
<p>where <em>{\bf \pi}(i) = {\bf \pi}(0){\bf P}^i</em> is the state
occupancy probability after <em>i</em> transitions, and <em>{\bf
\pi}(0) = \left[\pi_1(0), …, \pi_N(0) \right]</em> are the initial
state occupancy probabilities.
</p>
<p>If <em>\bf P</em> is absorbing, i.e., the stochastic process eventually
enters a state with no outgoing transitions, then we can compute the
expected number of visits until absorption <em>\bf L</em>. To do so, we
first rearrange the states by rewriting <em>\bf P</em> as
</p>
<div class="example">
<pre class="example"> / Q | R \
P = |---+---|
\ 0 | I /
</pre></div>
<p>where the first <em>t</em> states are transient
and the last <em>r</em> states are absorbing (<em>t+r = N</em>). The
matrix <em>{\bf N} = ({\bf I} - {\bf Q})^{-1}</em> is called the
<em>fundamental matrix</em>; <em>N_{i,j}</em> is the expected number of
times the process is in the <em>j</em>-th transient state assuming it
started in the <em>i</em>-th transient state. If we reshape <em>\bf N</em>
to the size of <em>\bf P</em> (filling missing entries with zeros), we
have that, for absorbing chains, <em>{\bf L} = {\bf \pi}(0){\bf N}</em>.
</p>
<span id="doc_002ddtmcexps"></span>
<dl>
<dt id="index-dtmcexps">Function File: <em><var>L</var> =</em> <strong>dtmcexps</strong> <em>(<var>P</var>, <var>n</var>, <var>p0</var>)</em></dt>
<dt id="index-dtmcexps-1">Function File: <em><var>L</var> =</em> <strong>dtmcexps</strong> <em>(<var>P</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-expected-sojourn-times_002c-DTMC"></span>
<span id="index-DTMC-4"></span>
<span id="index-discrete-time-Markov-chain-4"></span>
<span id="index-Markov-chain_002c-discrete-time-4"></span>
<p>Compute the expected number of visits to each state during the first
<var>n</var> transitions, or until abrosption.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p><em>N \times N</em> transition matrix. <code><var>P</var>(i,j)</code> is the
transition probability from state <em>i</em> to state <em>j</em>.
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of steps during which the expected number of visits are
computed (<em><var>n</var> ≥ 0</em>). If <code><var>n</var>=0</code>, returns
<var>p0</var>. If <code><var>n</var> > 0</code>, returns the expected number of
visits after exactly <var>n</var> transitions.
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>Initial state occupancy probabilities; <code><var>p0</var>(i)</code> is
the probability that the system is in state <em>i</em> at step 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>L</var>(i)</code></dt>
<dd><p>When called with two arguments, <code><var>L</var>(i)</code> is the expected
number of visits to state <em>i</em> before absorption. When
called with three arguments, <code><var>L</var>(i)</code> is the expected number
of visits to state <em>i</em> during the first <var>n</var> transitions.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Grinstead, Charles M.; Snell, J. Laurie (July
1997). <cite>Introduction to Probability</cite>, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
</li></ul>
<br>
<p><strong>See also:</strong> ctmcexps.
</p>
</dd></dl>
<hr>
<span id="Time_002daveraged-expected-sojourn-times-_0028DTMC_0029"></span><div class="header">
<p>
Next: <a href="#Mean-time-to-absorption-_0028DTMC_0029" accesskey="n" rel="next">Mean time to absorption (DTMC)</a>, Previous: <a href="#Expected-number-of-visits-_0028DTMC_0029" accesskey="p" rel="prev">Expected number of visits (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Time_002daveraged-expected-sojourn-times"></span><h4 class="subsection">3.1.4 Time-averaged expected sojourn times</h4>
<span id="doc_002ddtmctaexps"></span>
<dl>
<dt id="index-dtmctaexps">Function File: <em><var>M</var> =</em> <strong>dtmctaexps</strong> <em>(<var>P</var>, <var>n</var>, <var>p0</var>)</em></dt>
<dt id="index-dtmctaexps-1">Function File: <em><var>M</var> =</em> <strong>dtmctaexps</strong> <em>(<var>P</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-time_002dalveraged-sojourn-time_002c-DTMC"></span>
<span id="index-discrete-time-Markov-chain-5"></span>
<span id="index-Markov-chain_002c-discrete-time-5"></span>
<span id="index-DTMC-5"></span>
<p>Compute the <em>time-averaged sojourn times</em> <code><var>M</var>(i)</code>,
defined as the fraction of time spent in state <em>i</em> during the
first <em>n</em> transitions (or until absorption), assuming that the
state occupancy probabilities at time 0 are <var>p0</var>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p><em>N \times N</em> transition probability matrix.
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of transitions during which the time-averaged expected sojourn times
are computed (scalar, <em><var>n</var> ≥ 0</em>). if <em><var>n</var> = 0</em>,
returns <var>p0</var>.
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>Initial state occupancy probabilities (vector of length <em>N</em>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>M</var>(i)</code></dt>
<dd><p>If this function is called with three arguments, <code><var>M</var>(i)</code> is
the expected fraction of steps <em>{0, …, n}</em> spent in
state <em>i</em>, assuming that the state occupancy probabilities at
time zero are <var>p0</var>. If this function is called with two
arguments, <code><var>M</var>(i)</code> is the expected fraction of steps spent
in state <em>i</em> until absorption. <var>M</var> is a vector of length
<em>N</em>.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> dtmcexps.
</p>
</dd></dl>
<hr>
<span id="Mean-time-to-absorption-_0028DTMC_0029"></span><div class="header">
<p>
Next: <a href="#First-passage-times-_0028DTMC_0029" accesskey="n" rel="next">First passage times (DTMC)</a>, Previous: <a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029" accesskey="p" rel="prev">Time-averaged expected sojourn times (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Mean-Time-to-Absorption"></span><h4 class="subsection">3.1.5 Mean Time to Absorption</h4>
<p>The <em>mean time to absorption</em> is defined as the average number of
transitions that are required to enter an absorbing state, starting
from a transient state or given initial state occupancy probabilities
<em>{\bf \pi}(0)</em>.
</p>
<p>Let <em>t_i</em> be the expected number of transitions before being
absorbed in any absorbing state, starting from state <em>i</em>. The
vector <em>{\bf t} = [t_1, …, t_N]</em> can be computed from the
fundamental matrix <em>\bf N</em> (see <a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a>) as
</p>
<p><em>t = N c</em>
</p>
<p>where <em>\bf c</em> is a column vector of 1’s.
</p>
<p>Let <em>{\bf B} = [ B_{i, j} ]</em> be a matrix where <em>B_{i, j}</em> is
the probability of being absorbed in state <em>j</em>, starting from
transient state <em>i</em>. Again, using matrices <em>\bf N</em> and
<em>\bf R</em> (see <a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a>) we can write
</p>
<p><em>B = N R</em>
</p>
<span id="doc_002ddtmcmtta"></span>
<dl>
<dt id="index-dtmcmtta">Function File: <em>[<var>t</var> <var>N</var> <var>B</var>] =</em> <strong>dtmcmtta</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-dtmcmtta-1">Function File: <em>[<var>t</var> <var>N</var> <var>B</var>] =</em> <strong>dtmcmtta</strong> <em>(<var>P</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-mean-time-to-absorption_002c-DTMC"></span>
<span id="index-absorption-probabilities_002c-DTMC"></span>
<span id="index-fundamental-matrix"></span>
<span id="index-DTMC-6"></span>
<span id="index-discrete-time-Markov-chain-6"></span>
<span id="index-Markov-chain_002c-discrete-time-6"></span>
<p>Compute the expected number of steps before absorption for a
DTMC with state space <em>{1, …, N}</em>
and transition probability matrix <var>P</var>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p><em>N \times N</em> transition probability matrix.
<code><var>P</var>(i,j)</code> is the transition probability from state
<em>i</em> to state <em>j</em>.
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>Initial state occupancy probabilities (vector of length <em>N</em>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>t</var></code></dt>
<dt><code><var>t</var>(i)</code></dt>
<dd><p>When called with a single argument, <var>t</var> is a vector of length
<em>N</em> such that <code><var>t</var>(i)</code> is the expected number of steps
before being absorbed in any absorbing state, starting from state
<em>i</em>; if <em>i</em> is absorbing, <code><var>t</var>(i) = 0</code>. When
called with two arguments, <var>t</var> is a scalar, and represents the
expected number of steps before absorption, starting from the initial
state occupancy probability <var>p0</var>.
</p>
</dd>
<dt><code><var>N</var>(i)</code></dt>
<dt><code><var>N</var>(i,j)</code></dt>
<dd><p>When called with a single argument, <var>N</var> is the <em>N \times N</em>
fundamental matrix for <var>P</var>. <code><var>N</var>(i,j)</code> is the expected
number of visits to transient state <var>j</var> before absorption, if the
system started in transient state <var>i</var>. The initial state is counted
if <em>i = j</em>. When called with two arguments, <var>N</var> is a vector
of length <em>N</em> such that <code><var>N</var>(j)</code> is the expected number
of visits to transient state <var>j</var> before absorption, given initial
state occupancy probability <var>P0</var>.
</p>
</dd>
<dt><code><var>B</var>(i)</code></dt>
<dt><code><var>B</var>(i,j)</code></dt>
<dd><p>When called with a single argument, <var>B</var> is a <em>N \times N</em>
matrix where <code><var>B</var>(i,j)</code> is the probability of being
absorbed in state <em>j</em>, starting from transient state <em>i</em>;
if <em>j</em> is not absorbing, <code><var>B</var>(i,j) = 0</code>; if <em>i</em>
is absorbing, <code><var>B</var>(i,i) = 1</code> and <code><var>B</var>(i,j) = 0</code>
for all <em>i \neq j</em>. When called with two arguments, <var>B</var> is
a vector of length <em>N</em> where <code><var>B</var>(j)</code> is the
probability of being absorbed in state <var>j</var>, given initial state
occupancy probabilities <var>p0</var>.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Grinstead, Charles M.; Snell, J. Laurie (July
1997). <cite>Introduction to Probability</cite>, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
</li></ul>
<br>
<p><strong>See also:</strong> ctmcmtta.
</p>
</dd></dl>
<hr>
<span id="First-passage-times-_0028DTMC_0029"></span><div class="header">
<p>
Previous: <a href="#Mean-time-to-absorption-_0028DTMC_0029" accesskey="p" rel="prev">Mean time to absorption (DTMC)</a>, Up: <a href="#Discrete_002dTime-Markov-Chains" accesskey="u" rel="up">Discrete-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="First-Passage-Times"></span><h4 class="subsection">3.1.6 First Passage Times</h4>
<p>The First Passage Time <em>M_{i, j}</em> is the average number of
transitions needed to enter state <em>j</em> for the first time,
starting from state <em>i</em>. Matrix <em>\bf M</em> satisfies the
property
</p>
<div class="example">
<pre class="example"> ___
\
M_ij = 1 + > P_ij * M_kj
/___
k!=j
</pre></div>
<p>To compute <em>{\bf M} = [ M_{i, j}]</em> a different formulation is
used. Let <em>\bf W</em> be the <em>N \times N</em> matrix having each
row equal to the stationary state occupancy probability vector
<em>\bf \pi</em> for <em>\bf P</em>; let <em>\bf I</em> be the <em>N
\times N</em> identity matrix (i.e., the matrix of all ones). Define
<em>\bf Z</em> as follows:
</p>
<div class="example">
<pre class="example"> -1
Z = (I - P + W)
</pre></div>
<p>Then, we have that
</p>
<div class="example">
<pre class="example"> Z_jj - Z_ij
M_ij = -----------
\pi_j
</pre></div>
<p>According to the definition above, <em>M_{i,i} = 0</em>. We arbitrarily
set <em>M_{i,i}</em> to the <em>mean recurrence time</em> <em>r_i</em> for
state <em>i</em>, that is the average number of transitions needed to
return to state <em>i</em> starting from it. <em>r_i</em> is:
</p>
<div class="example">
<pre class="example"> 1
r_i = -----
\pi_i
</pre></div>
<span id="doc_002ddtmcfpt"></span>
<dl>
<dt id="index-dtmcfpt">Function File: <em><var>M</var> =</em> <strong>dtmcfpt</strong> <em>(<var>P</var>)</em></dt>
<dd>
<span id="index-first-passage-times"></span>
<span id="index-mean-recurrence-times"></span>
<span id="index-discrete-time-Markov-chain-7"></span>
<span id="index-Markov-chain_002c-discrete-time-7"></span>
<span id="index-DTMC-7"></span>
<p>Compute mean first passage times and mean recurrence times
for an irreducible discrete-time Markov chain over the state space
<em>{1, …, N}</em>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>transition probability from state <em>i</em> to state <em>j</em>.
<var>P</var> must be an irreducible stochastic matrix, which means that
the sum of each row must be 1 (<em>\sum_{j=1}^N P_{i j} = 1</em>),
and the rank of <var>P</var> must be <em>N</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>M</var>(i,j)</code></dt>
<dd><p>For all <em>1 ≤ i, j ≤ N</em>, <em>i \neq j</em>, <code><var>M</var>(i,j)</code> is
the average number of transitions before state <var>j</var> is entered
for the first time, starting from state <var>i</var>.
<code><var>M</var>(i,i)</code> is the <em>mean recurrence time</em> of state
<em>i</em>, and represents the average time needed to return to state
<var>i</var>.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Grinstead, Charles M.; Snell, J. Laurie (July
1997). <cite>Introduction to Probability</cite>, Ch. 11: Markov
Chains. American Mathematical Society. ISBN 978-0821807491.
</li></ul>
<br>
<p><strong>See also:</strong> ctmcfpt.
</p>
</dd></dl>
<hr>
<span id="Continuous_002dTime-Markov-Chains"></span><div class="header">
<p>
Previous: <a href="#Discrete_002dTime-Markov-Chains" accesskey="p" rel="prev">Discrete-Time Markov Chains</a>, Up: <a href="#Markov-Chains" accesskey="u" rel="up">Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Continuous_002dTime-Markov-Chains-1"></span><h3 class="section">3.2 Continuous-Time Markov Chains</h3>
<p>A stochastic process <em>{X(t), t ≥ 0}</em> is a continuous-time
Markov chain if, for all integers <em>n</em>, and for any sequence
<em>t_0, t_1 , …, t_n, t_{n+1}</em> such that <em>t_0 < t_1 <
… < t_n < t_{n+1}</em>, we have
</p>
<p><em>P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, ..., X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)</em>
</p>
<p>A continuous-time Markov chain is defined according to an
<em>infinitesimal generator matrix</em> <em>{\bf Q} = [Q_{i,j}]</em>,
where for each <em>i \neq j</em>, <em>Q_{i, j}</em> is the transition rate
from state <em>i</em> to state <em>j</em>. The matrix <em>\bf Q</em> must
satisfy the property that, for all <em>i</em>, <em>\sum_{j=1}^N Q_{i,
j} = 0</em>.
</p>
<span id="doc_002dctmcchkQ"></span>
<dl>
<dt id="index-ctmcchkQ">Function File: <em>[<var>result</var> <var>err</var>] =</em> <strong>ctmcchkQ</strong> <em>(<var>Q</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time"></span>
<p>If <var>Q</var> is a valid infinitesimal generator matrix, return
the size (number of rows or columns) of <var>Q</var>. If <var>Q</var> is not
an infinitesimal generator matrix, set <var>result</var> to zero, and
<var>err</var> to an appropriate error string.
</p>
</dd></dl>
<p>Similarly to the DTMC case, a CTMC is <em>irreducible</em> if every
state is eventually reachable from every other state in finite time.
</p>
<span id="doc_002dctmcisir"></span>
<dl>
<dt id="index-ctmcisir">Function File: <em>[<var>r</var> <var>s</var>] =</em> <strong>ctmcisir</strong> <em>(<var>P</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-1"></span>
<span id="index-continuous-time-Markov-chain"></span>
<span id="index-CTMC"></span>
<span id="index-irreducible-Markov-chain-1"></span>
<p>Check if <var>Q</var> is irreducible, and identify Strongly Connected
Components (SCC) in the transition graph of the DTMC with infinitesimal
generator matrix <var>Q</var>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p>Infinitesimal generator matrix. <var>Q</var> is a <em>N \times N</em> square
matrix where <code><var>Q</var>(i,j)</code> is the transition rate from state
<em>i</em> to state <em>j</em>, for <em>1 ≤ i, j ≤ N</em>,
<em>i \neq j</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>r</var></code></dt>
<dd><p>1 if <var>Q</var> is irreducible, 0 otherwise.
</p>
</dd>
<dt><code><var>s</var>(i)</code></dt>
<dd><p>strongly connected component (SCC) that state <em>i</em> belongs to.
SCCs are numbered <em>1, 2, …</em>. If the graph is strongly
connected, then there is a single SCC and the predicate <code>all(s == 1)</code>
evaluates to true.
</p>
</dd>
</dl>
</dd></dl>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#State-occupancy-probabilities-_0028CTMC_0029" accesskey="1">State occupancy probabilities (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Birth_002ddeath-process-_0028CTMC_0029" accesskey="2">Birth-death process (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Expected-sojourn-times-_0028CTMC_0029" accesskey="3">Expected sojourn times (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029" accesskey="4">Time-averaged expected sojourn times (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Mean-time-to-absorption-_0028CTMC_0029" accesskey="5">Mean time to absorption (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#First-passage-times-_0028CTMC_0029" accesskey="6">First passage times (CTMC)</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<span id="State-occupancy-probabilities-_0028CTMC_0029"></span><div class="header">
<p>
Next: <a href="#Birth_002ddeath-process-_0028CTMC_0029" accesskey="n" rel="next">Birth-death process (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="State-occupancy-probabilities-1"></span><h4 class="subsection">3.2.1 State occupancy probabilities</h4>
<p>Similarly to the discrete case, we denote with <em>{\bf \pi}(t) =
\left[\pi_1(t), …, \pi_N(t) \right]</em> the <em>state occupancy
probability vector</em> at time <em>t</em>. <em>\pi_i(t)</em> is the
probability that the system is in state <em>i</em> at time <em>t
≥ 0</em>.
</p>
<p>Given the infinitesimal generator matrix <em>\bf Q</em> and initial
state occupancy probabilities <em>{\bf \pi}(0) = \left[\pi_1(0),
…, \pi_N(0)\right]</em>, the occupancy probabilities
<em>{\bf \pi}(t)</em> at time <em>t</em> can be computed as:
</p>
<div class="example">
<pre class="example">\pi(t) = \pi(0) exp(Qt)
</pre></div>
<p>where <em>\exp( {\bf Q} t )</em> is the matrix exponential
of <em>{\bf Q} t</em>. Under certain conditions, there exists a
<em>stationary state occupancy probability</em> <em>{\bf \pi} =
\lim_{t \rightarrow +\infty} {\bf \pi}(t)</em> that is independent from
<em>{\bf \pi}(0)</em>. <em>\bf \pi</em> is the solution of the following
linear system:
</p>
<div class="example">
<pre class="example">/
| \pi Q = 0
| \pi 1^T = 1
\
</pre></div>
<span id="doc_002dctmc"></span>
<dl>
<dt id="index-ctmc">Function File: <em><var>p</var> =</em> <strong>ctmc</strong> <em>(<var>Q</var>)</em></dt>
<dt id="index-ctmc-1">Function File: <em><var>p</var> =</em> <strong>ctmc</strong> <em>(<var>Q</var>, <var>t</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-2"></span>
<span id="index-continuous-time-Markov-chain-1"></span>
<span id="index-Markov-chain_002c-state-occupancy-probabilities"></span>
<span id="index-stationary-probabilities"></span>
<span id="index-CTMC-1"></span>
<p>Compute stationary or transient state occupancy probabilities for a continuous-time Markov chain.
</p>
<p>With a single argument, compute the stationary state occupancy
probabilities <em><var>p</var>(1), …, <var>p</var>(N)</em> for a
continuous-time Markov chain with finite state space <em>{1, …,
N}</em> and <em>N \times N</em> infinitesimal generator matrix <var>Q</var>.
With three arguments, compute the state occupancy probabilities
<em><var>p</var>(1), …, <var>p</var>(N)</em> that the system is in state <em>i</em>
at time <var>t</var>, given initial state occupancy probabilities
<em><var>p0</var>(1), …, <var>p0</var>(N)</em> at time 0.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p>Infinitesimal generator matrix. <var>Q</var> is a <em>N \times N</em> square
matrix where <code><var>Q</var>(i,j)</code> is the transition rate from state
<em>i</em> to state <em>j</em>, for <em>1 ≤ i \neq j ≤ N</em>.
<var>Q</var> must satisfy the property that <em>\sum_{j=1}^N Q_{i, j} =
0</em>
</p>
</dd>
<dt><code><var>t</var></code></dt>
<dd><p>Time at which to compute the transient probability (<em>t ≥
0</em>). If omitted, the function computes the steady state occupancy
probability vector.
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>probability that the system is in state <em>i</em> at time 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>p</var>(i)</code></dt>
<dd><p>If this function is invoked with a single argument, <code><var>p</var>(i)</code>
is the steady-state probability that the system is in state <em>i</em>,
<em>i = 1, …, N</em>. If this function is invoked with three
arguments, <code><var>p</var>(i)</code> is the probability that the system is in
state <em>i</em> at time <var>t</var>, given the initial occupancy
probabilities <var>p0</var>(1), …, <var>p0</var>(N).
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> dtmc.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>Consider a two-state CTMC where all transition rates between states
are equal to 1. The stationary state occupancy probabilities can be
computed as follows:
</p>
<div class="example">
<pre class="verbatim"> Q = [ -1 1; ...
1 -1 ];
q = ctmc(Q)
</pre><pre class="example"> ⇒ q = 0.50000 0.50000
</pre></div>
<hr>
<span id="Birth_002ddeath-process-_0028CTMC_0029"></span><div class="header">
<p>
Next: <a href="#Expected-sojourn-times-_0028CTMC_0029" accesskey="n" rel="next">Expected sojourn times (CTMC)</a>, Previous: <a href="#State-occupancy-probabilities-_0028CTMC_0029" accesskey="p" rel="prev">State occupancy probabilities (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Birth_002dDeath-Process"></span><h4 class="subsection">3.2.2 Birth-Death Process</h4>
<span id="doc_002dctmcbd"></span>
<dl>
<dt id="index-ctmcbd">Function File: <em><var>Q</var> =</em> <strong>ctmcbd</strong> <em>(<var>b</var>, <var>d</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-3"></span>
<span id="index-continuous-time-Markov-chain-2"></span>
<span id="index-CTMC-2"></span>
<span id="index-birth_002ddeath-process_002c-CTMC"></span>
<p>Returns the infinitesimal generator matrix <em>Q</em> for a
continuous birth-death process over the finite state space
<em>{1, …, N}</em>. For each <em>i=1, …, (N-1)</em>,
<code><var>b</var>(i)</code> is the transition rate from state <em>i</em> to
state <em>(i+1)</em>, and <code><var>d</var>(i)</code> is the transition rate from state
<em>(i+1)</em> to state <em>i</em>.
</p>
<p>Matrix <em>\bf Q</em> is therefore defined as:
</p>
<div class="example">
<pre class="example">/ \
| -b(1) b(1) |
| d(1) -(d(1)+b(2)) b(2) |
| d(2) -(d(2)+b(3)) b(3) |
| |
| ... ... ... |
| |
| d(N-2) -(d(N-2)+b(N-1)) b(N-1) |
| d(N-1) -d(N-1) |
\ /
</pre></div>
<p>where <em>\lambda_i</em> and <em>\mu_i</em> are the birth and
death rates, respectively.
</p>
<br>
<p><strong>See also:</strong> dtmcbd.
</p>
</dd></dl>
<hr>
<span id="Expected-sojourn-times-_0028CTMC_0029"></span><div class="header">
<p>
Next: <a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029" accesskey="n" rel="next">Time-averaged expected sojourn times (CTMC)</a>, Previous: <a href="#Birth_002ddeath-process-_0028CTMC_0029" accesskey="p" rel="prev">Birth-death process (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Expected-Sojourn-Times"></span><h4 class="subsection">3.2.3 Expected Sojourn Times</h4>
<p>Given a <em>N</em> state continuous-time Markov Chain with infinitesimal
generator matrix <em>\bf Q</em>, we define the vector <em>{\bf L}(t) =
\left[L_1(t), …, L_N(t)\right]</em> such that <em>L_i(t)</em> is the
expected sojourn time in state <em>i</em> during the interval
<em>[0,t)</em>, assuming that the initial occupancy probabilities at time
0 were <em>{\bf \pi}(0)</em>. <em>{\bf L}(t)</em> can be expressed as the
solution of the following differential equation:
</p>
<div class="example">
<pre class="example"> dL
--(t) = L(t) Q + pi(0), L(0) = 0
dt
</pre></div>
<p>Alternatively, <em>{\bf L}(t)</em> can also be expressed in integral
form as:
</p>
<div class="example">
<pre class="example"> / t
L(t) = | pi(u) du
/ 0
</pre></div>
<p>where <em>{\bf \pi}(t) = {\bf \pi}(0) \exp({\bf Q}t)</em> is
the state occupancy probability at time <em>t</em>; <em>\exp({\bf Q}t)</em>
is the matrix exponential of <em>{\bf Q}t</em>.
</p>
<p>If there are absorbing states, we can define the vector of
<em>expected sojourn times until absorption</em> <em>{\bf L}(\infty)</em>,
where for each transient state <em>i</em>, <em>L_i(\infty)</em> is the
expected total time spent in state <em>i</em> until absorption, assuming
that the system started with given state occupancy probabilities
<em>{\bf \pi}(0)</em>. Let <em>\tau</em> be the set of transient (i.e.,
non absorbing) states; let <em>{\bf Q}_\tau</em> be the restriction of
<em>\bf Q</em> to the transient sub-states only. Similarly, let
<em>{\bf \pi}_\tau(0)</em> be the restriction of the initial state
occupancy probability vector <em>{\bf \pi}(0)</em> to transient states
<em>\tau</em>.
</p>
<p>The expected time to absorption <em>{\bf L}_\tau(\infty)</em> is defined as
the solution of the following equation:
</p>
<div class="example">
<pre class="example">L_T( inf ) Q_T = -pi_T(0)
</pre></div>
<span id="doc_002dctmcexps"></span>
<dl>
<dt id="index-ctmcexps">Function File: <em><var>L</var> =</em> <strong>ctmcexps</strong> <em>(<var>Q</var>, <var>t</var>, <var>p</var> )</em></dt>
<dt id="index-ctmcexps-1">Function File: <em><var>L</var> =</em> <strong>ctmcexps</strong> <em>(<var>Q</var>, <var>p</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-4"></span>
<span id="index-continuous-time-Markov-chain-3"></span>
<span id="index-expected-sojourn-time_002c-CTMC"></span>
<span id="index-CTMC-3"></span>
<p>With three arguments, compute the expected times <code><var>L</var>(i)</code>
spent in each state <em>i</em> during the time interval <em>[0,t]</em>,
assuming that the initial occupancy vector is <var>p</var>. With two
arguments, compute the expected time <code><var>L</var>(i)</code> spent in each
transient state <em>i</em> until absorption.
</p>
<p><strong>Note:</strong> In its current implementation, this function
requires that an absorbing state is reachable from any
non-absorbing state of <em>Q</em>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p><em>N \times N</em> infinitesimal generator matrix. <code><var>Q</var>(i,j)</code>
is the transition rate from state <em>i</em> to state <em>j</em>,
<em>1 ≤ i, j ≤ N</em>, <em>i \neq j</em>.
The matrix <var>Q</var> must also satisfy the
condition <em>\sum_{j=1}^N Q_{i,j} = 0</em> for every <em>i=1, …, N</em>.
</p>
</dd>
<dt><code><var>t</var></code></dt>
<dd><p>If given, compute the expected sojourn times in <em>[0,t]</em>
</p>
</dd>
<dt><code><var>p</var>(i)</code></dt>
<dd><p>Initial occupancy probability vector; <code><var>p</var>(i)</code> is the
probability the system is in state <em>i</em> at time 0, <em>i = 1,
…, N</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>L</var>(i)</code></dt>
<dd><p>If this function is called with three arguments, <code><var>L</var>(i)</code> is
the expected time spent in state <em>i</em> during the interval
<em>[0,t]</em>. If this function is called with two arguments
<code><var>L</var>(i)</code> is the expected time spent in transient state
<em>i</em> until absorption; if state <em>i</em> is absorbing,
<code><var>L</var>(i)</code> is zero.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> dtmcexps.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>Let us consider a 4-states pure birth continuous process where the
transition rate from state <em>i</em> to state <em>(i+1)</em> is
<em>\lambda_i = i \lambda</em> (<em>i=1, 2, 3</em>), with <em>\lambda =
0.5</em>. The following code computes the expected sojourn time for each
state <em>i</em>, given initial occupancy probabilities <em>{\bf
\pi}_0=[1, 0, 0, 0]</em>.
</p>
<div class="example">
<pre class="verbatim"> lambda = 0.5;
N = 4;
b = lambda*[1:N-1];
d = zeros(size(b));
Q = ctmcbd(b,d);
t = linspace(0,10,100);
p0 = zeros(1,N); p0(1)=1;
L = zeros(length(t),N);
for i=1:length(t)
L(i,:) = ctmcexps(Q,t(i),p0);
endfor
plot( t, L(:,1), ";State 1;", "linewidth", 2, ...
t, L(:,2), ";State 2;", "linewidth", 2, ...
t, L(:,3), ";State 3;", "linewidth", 2, ...
t, L(:,4), ";State 4;", "linewidth", 2 );
legend("location","northwest"); legend("boxoff");
xlabel("Time");
ylabel("Expected sojourn time");
</pre></div>
<hr>
<span id="Time_002daveraged-expected-sojourn-times-_0028CTMC_0029"></span><div class="header">
<p>
Next: <a href="#Mean-time-to-absorption-_0028CTMC_0029" accesskey="n" rel="next">Mean time to absorption (CTMC)</a>, Previous: <a href="#Expected-sojourn-times-_0028CTMC_0029" accesskey="p" rel="prev">Expected sojourn times (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Time_002dAveraged-Expected-Sojourn-Times"></span><h4 class="subsection">3.2.4 Time-Averaged Expected Sojourn Times</h4>
<span id="doc_002dctmctaexps"></span>
<dl>
<dt id="index-ctmctaexps">Function File: <em><var>M</var> =</em> <strong>ctmctaexps</strong> <em>(<var>Q</var>, <var>t</var>, <var>p0</var>)</em></dt>
<dt id="index-ctmctaexps-1">Function File: <em><var>M</var> =</em> <strong>ctmctaexps</strong> <em>(<var>Q</var>, <var>p0</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-5"></span>
<span id="index-time_002dalveraged-sojourn-time_002c-CTMC"></span>
<span id="index-continuous-time-Markov-chain-4"></span>
<span id="index-CTMC-4"></span>
<p>Compute the <em>time-averaged sojourn time</em> <code><var>M</var>(i)</code>,
defined as the fraction of the time interval <em>[0,t]</em> (or until
absorption) spent in state <em>i</em>, assuming that the state
occupancy probabilities at time 0 are <var>p</var>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p>Infinitesimal generator matrix. <code><var>Q</var>(i,j)</code> is the transition
rate from state <em>i</em> to state <em>j</em>,
<em>1 ≤ i,j ≤ N</em>, <em>i \neq j</em>. The
matrix <var>Q</var> must also satisfy the condition <em>\sum_{j=1}^N Q_{i,j} = 0</em>
</p>
</dd>
<dt><code><var>t</var></code></dt>
<dd><p>Time. If omitted, the results are computed until absorption.
</p>
</dd>
<dt><code><var>p0</var>(i)</code></dt>
<dd><p>initial state occupancy probabilities. <code><var>p0</var>(i)</code> is the
probability that the system is in state <em>i</em> at time 0, <em>i
= 1, …, N</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>M</var>(i)</code></dt>
<dd><p>When called with three arguments, <code><var>M</var>(i)</code> is the expected
fraction of the interval <em>[0,t]</em> spent in state <em>i</em>
assuming that the state occupancy probability at time zero is
<var>p</var>. When called with two arguments, <code><var>M</var>(i)</code> is the
expected fraction of time until absorption spent in state <em>i</em>;
in this case the mean time to absorption is <code>sum(<var>M</var>)</code>.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> ctmcexps.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<div class="example">
<pre class="verbatim"> lambda = 0.5;
N = 4;
birth = lambda*linspace(1,N-1,N-1);
death = zeros(1,N-1);
Q = diag(birth,1)+diag(death,-1);
Q -= diag(sum(Q,2));
t = linspace(1e-5,30,100);
p = zeros(1,N); p(1)=1;
M = zeros(length(t),N);
for i=1:length(t)
M(i,:) = ctmctaexps(Q,t(i),p);
endfor
clf;
plot(t, M(:,1), ";State 1;", "linewidth", 2, ...
t, M(:,2), ";State 2;", "linewidth", 2, ...
t, M(:,3), ";State 3;", "linewidth", 2, ...
t, M(:,4), ";State 4 (absorbing);", "linewidth", 2 );
legend("location","east"); legend("boxoff");
xlabel("Time");
ylabel("Time-averaged Expected sojourn time");
</pre></div>
<hr>
<span id="Mean-time-to-absorption-_0028CTMC_0029"></span><div class="header">
<p>
Next: <a href="#First-passage-times-_0028CTMC_0029" accesskey="n" rel="next">First passage times (CTMC)</a>, Previous: <a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029" accesskey="p" rel="prev">Time-averaged expected sojourn times (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Mean-Time-to-Absorption-1"></span><h4 class="subsection">3.2.5 Mean Time to Absorption</h4>
<span id="doc_002dctmcmtta"></span>
<dl>
<dt id="index-ctmcmtta">Function File: <em><var>t</var> =</em> <strong>ctmcmtta</strong> <em>(<var>Q</var>, <var>p</var>)</em></dt>
<dd>
<span id="index-Markov-chain_002c-continuous-time-6"></span>
<span id="index-continuous-time-Markov-chain-5"></span>
<span id="index-CTMC-5"></span>
<span id="index-mean-time-to-absorption_002c-CTMC"></span>
<p>Compute the Mean-Time to Absorption (MTTA) of the CTMC described by
the infinitesimal generator matrix <var>Q</var>, starting from initial
occupancy probabilities <var>p</var>. If there are no absorbing states, this
function fails with an error.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p><em>N \times N</em> infinitesimal generator matrix. <code><var>Q</var>(i,j)</code>
is the transition rate from state <em>i</em> to state <em>j</em>, <em>i
\neq j</em>. The matrix <var>Q</var> must satisfy the condition
<em>\sum_{j=1}^N Q_{i,j} = 0</em>
</p>
</dd>
<dt><code><var>p</var>(i)</code></dt>
<dd><p>probability that the system is in state <em>i</em>
at time 0, for each <em>i=1, …, N</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>t</var></code></dt>
<dd><p>Mean time to absorption of the process represented by matrix <var>Q</var>.
If there are no absorbing states, this function fails.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998.
</li></ul>
<br>
<p><strong>See also:</strong> ctmcexps.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>Let us consider a simple model of redundant disk array. We assume that
the array is made of 5 independent disks and can tolerate up to 2 disk
failures without losing data. If three or more disks break, the array
is dead and unrecoverable. We want to estimate the
Mean-Time-To-Failure (MTTF) of the disk array.
</p>
<p>We model this system as a 4 states continuous Markov chain with state
space <em>{ 2, 3, 4, 5 }</em>. In state <em>i</em> there are exactly
<em>i</em> active (i.e., non failed) disks; state <em>2</em> is
absorbing. Let <em>\mu</em> be the failure rate of a single disk. The
system starts in state <em>5</em> (all disks are operational). We use a
pure death process, where the death rate from state <em>i</em> to state
<em>(i-1)</em> is <em>\mu i</em>, for <em>i = 3, 4, 5</em>).
</p>
<p>The MTTF of the disk array is the MTTA of the Markov Chain, and can be
computed as follows:
</p>
<div class="example">
<pre class="verbatim"> mu = 0.01;
death = [ 3 4 5 ] * mu;
birth = 0*death;
Q = ctmcbd(birth,death);
t = ctmcmtta(Q,[0 0 0 1])
</pre><pre class="example"> ⇒ t = 78.333
</pre></div>
<hr>
<span id="First-passage-times-_0028CTMC_0029"></span><div class="header">
<p>
Previous: <a href="#Mean-time-to-absorption-_0028CTMC_0029" accesskey="p" rel="prev">Mean time to absorption (CTMC)</a>, Up: <a href="#Continuous_002dTime-Markov-Chains" accesskey="u" rel="up">Continuous-Time Markov Chains</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="First-Passage-Times-1"></span><h4 class="subsection">3.2.6 First Passage Times</h4>
<span id="doc_002dctmcfpt"></span>
<dl>
<dt id="index-ctmcfpt">Function File: <em><var>M</var> =</em> <strong>ctmcfpt</strong> <em>(<var>Q</var>)</em></dt>
<dt id="index-ctmcfpt-1">Function File: <em><var>m</var> =</em> <strong>ctmcfpt</strong> <em>(<var>Q</var>, <var>i</var>, <var>j</var>)</em></dt>
<dd>
<span id="index-first-passage-times_002c-CTMC"></span>
<span id="index-CTMC-6"></span>
<span id="index-continuous-time-Markov-chain-6"></span>
<span id="index-Markov-chain_002c-continuous-time-7"></span>
<p>Compute mean first passage times for an irreducible continuous-time
Markov chain.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Q</var>(i,j)</code></dt>
<dd><p>Infinitesimal generator matrix. <var>Q</var> is a <em>N \times N</em>
square matrix where <code><var>Q</var>(i,j)</code> is the transition rate from
state <em>i</em> to state <em>j</em>, for <em>1 ≤ i, j ≤ N</em>,
<em>i \neq j</em>. Transition rates must be nonnegative, and
<em>\sum_{j=1}^N Q_{i,j} = 0</em>
</p>
</dd>
<dt><code><var>i</var></code></dt>
<dd><p>Initial state.
</p>
</dd>
<dt><code><var>j</var></code></dt>
<dd><p>Destination state.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>M</var>(i,j)</code></dt>
<dd><p>average time before state
<var>j</var> is visited for the first time, starting from state <var>i</var>.
We let <code><var>M</var>(i,i) = 0</code>.
</p>
</dd>
<dt><code>m</code></dt>
<dd><p><var>m</var> is the average time before state <var>j</var> is visited for the first
time, starting from state <var>i</var>.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> ctmcmtta.
</p>
</dd></dl>
<hr>
<span id="Single-Station-Queueing-Systems"></span><div class="header">
<p>
Next: <a href="#Queueing-Networks" accesskey="n" rel="next">Queueing Networks</a>, Previous: <a href="#Markov-Chains" accesskey="p" rel="prev">Markov Chains</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Single-Station-Queueing-Systems-1"></span><h2 class="chapter">4 Single Station Queueing Systems</h2>
<p>Single Station Queueing Systems contain a single station, and can
usually be analyzed easily. The <code>queueing</code> package contains
functions for handling the following types of queues:
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#The-M_002fM_002f1-System" accesskey="1">The M/M/1 System</a></td><td> </td><td align="left" valign="top">Single-server queueing station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fM_002fm-System" accesskey="2">The M/M/m System</a></td><td> </td><td align="left" valign="top">Multiple-server queueing station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-Erlang_002dB-Formula" accesskey="3">The Erlang-B Formula</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-Erlang_002dC-Formula" accesskey="4">The Erlang-C Formula</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-Engset-Formula" accesskey="5">The Engset Formula</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fM_002finf-System" accesskey="6">The M/M/inf System</a></td><td> </td><td align="left" valign="top">Infinite-server (delay center) station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fM_002f1_002fK-System" accesskey="7">The M/M/1/K System</a></td><td> </td><td align="left" valign="top">Single-server, finite-capacity queueing station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fM_002fm_002fK-System" accesskey="8">The M/M/m/K System</a></td><td> </td><td align="left" valign="top">Multiple-server, finite-capacity queueing station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-Asymmetric-M_002fM_002fm-System" accesskey="9">The Asymmetric M/M/m System</a></td><td> </td><td align="left" valign="top">Asymmetric multiple-server queueing station.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fG_002f1-System">The M/G/1 System</a></td><td> </td><td align="left" valign="top">Single-server with general service time distribution.
</td></tr>
<tr><td align="left" valign="top">• <a href="#The-M_002fHm_002f1-System">The M/Hm/1 System</a></td><td> </td><td align="left" valign="top">Single-server with hyperexponential service time distribution.
</td></tr>
</table>
<hr>
<span id="The-M_002fM_002f1-System"></span><div class="header">
<p>
Next: <a href="#The-M_002fM_002fm-System" accesskey="n" rel="next">The M/M/m System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fM_002f1-System-1"></span><h3 class="section">4.1 The <em>M/M/1</em> System</h3>
<p>The <em>M/M/1</em> system contains a single server connected to an
unbounded FCFS queue. Requests arrive according to a Poisson process
with rate <em>\lambda</em>; the service time is exponentially
distributed with average service rate <em>\mu</em>. The system is stable
if <em>\lambda < \mu</em>.
</p>
<span id="doc_002dqsmm1"></span>
<dl>
<dt id="index-qsmm1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] =</em> <strong>qsmm1</strong> <em>(<var>lambda</var>, <var>mu</var>)</em></dt>
<dt id="index-qsmm1-1">Function File: <em><var>pk</var> =</em> <strong>qsmm1</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>k</var>)</em></dt>
<dd>
<span id="index-M_002fM_002f1-system"></span>
<p>Compute utilization, response time, average number of requests and throughput for a <em>M/M/1</em> queue.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var> ≥ 0</code>).
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p>Service rate (<code><var>mu</var> > <var>lambda</var></code>).
</p>
</dd>
<dt><code><var>k</var></code></dt>
<dd><p>Number of requests in the system (<code><var>k</var> ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Server utilization
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Server response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Server throughput. If the system is ergodic (<code><var>mu</var> >
<var>lambda</var></code>), we always have <code><var>X</var> = <var>lambda</var></code>
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Steady-state probability that there are no requests in the system.
</p>
</dd>
<dt><code><var>pk</var></code></dt>
<dd><p>Steady-state probability that there are <var>k</var> requests in the system.
(including the one being served).
</p>
</dd>
</dl>
<p>If this function is called with less than three input parameters,
<var>lambda</var> and <var>mu</var> can be vectors of the same size. In this
case, the results will be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998, Section 6.3
</li></ul>
<br>
<p><strong>See also:</strong> qsmmm, qsmminf, qsmmmk.
</p>
</dd></dl>
<hr>
<span id="The-M_002fM_002fm-System"></span><div class="header">
<p>
Next: <a href="#The-Erlang_002dB-Formula" accesskey="n" rel="next">The Erlang-B Formula</a>, Previous: <a href="#The-M_002fM_002f1-System" accesskey="p" rel="prev">The M/M/1 System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fM_002fm-System-1"></span><h3 class="section">4.2 The <em>M/M/m</em> System</h3>
<p>The <em>M/M/m</em> system is similar to the <em>M/M/1</em> system, except
that there are <em>m \geq 1</em> identical servers connected to a shared
FCFS queue. Thus, at most <em>m</em> requests can be served at the same
time. The <em>M/M/m</em> system can be seen as a single server with
load-dependent service rate <em>\mu(n)</em>, which is a function of the
number <em>n</em> of requests in the system:
</p>
<div class="example">
<pre class="example">mu(n) = min(m,n)*mu
</pre></div>
<p>where <em>\mu</em> is the service rate of each individual server.
</p>
<span id="doc_002dqsmmm"></span>
<dl>
<dt id="index-qsmmm">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] =</em> <strong>qsmmm</strong> <em>(<var>lambda</var>, <var>mu</var>)</em></dt>
<dt id="index-qsmmm-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] =</em> <strong>qsmmm</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>m</var>)</em></dt>
<dt id="index-qsmmm-2">Function File: <em><var>pk</var> =</em> <strong>qsmmm</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>m</var>, <var>k</var>)</em></dt>
<dd>
<span id="index-M_002fM_002fm-system"></span>
<p>Compute utilization, response time, average number of requests in
service and throughput for a <em>M/M/m</em> queue, a queueing system
with <em>m</em> identical servers connected to a single FCFS
queue.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var>>0</code>).
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p>Service rate (<code><var>mu</var>><var>lambda</var></code>).
</p>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of servers (<code><var>m</var> ≥ 1</code>).
Default is <code><var>m</var>=1</code>.
</p>
</dd>
<dt><code><var>k</var></code></dt>
<dd><p>Number of requests in the system (<code><var>k</var> ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Service center utilization, <em>U = \lambda / (m \mu)</em>.
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center mean response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Service center throughput. If the system is ergodic,
we will always have <code><var>X</var> = <var>lambda</var></code>
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Steady-state probability that there are 0 requests in the system
</p>
</dd>
<dt><code><var>pm</var></code></dt>
<dd><p>Steady-state probability that an arriving request has to wait in the
queue
</p>
</dd>
<dt><code><var>pk</var></code></dt>
<dd><p>Steady-state probability that there are <var>k</var> requests in the
system (including the one being served).
</p>
</dd>
</dl>
<p>If this function is called with less than four parameters,
<var>lambda</var>, <var>mu</var> and <var>m</var> can be vectors of the same size. In this
case, the results will be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998, Section 6.5
</li></ul>
<br>
<p><strong>See also:</strong> erlangc,qsmm1,qsmminf,qsmmmk.
</p>
</dd></dl>
<hr>
<span id="The-Erlang_002dB-Formula"></span><div class="header">
<p>
Next: <a href="#The-Erlang_002dC-Formula" accesskey="n" rel="next">The Erlang-C Formula</a>, Previous: <a href="#The-M_002fM_002fm-System" accesskey="p" rel="prev">The M/M/m System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-Erlang_002dB-Formula-1"></span><h3 class="section">4.3 The Erlang-B Formula</h3>
<span id="doc_002derlangb"></span>
<dl>
<dt id="index-erlangb">Function File: <em><var>B</var> =</em> <strong>erlangb</strong> <em>(<var>A</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-Erlang_002dB-formula"></span>
<p>Compute the steady-state blocking probability in the Erlang loss model.
</p>
<p>The Erlang-B formula <em>E_B(A, m)</em> gives the probability that an
open system with <em>m</em> identical servers, arrival rate
<em>\lambda</em>, individual service rate <em>\mu</em> and offered load
<em>A = \lambda / \mu</em> has all servers busy. This corresponds to
the rejection probability of an <em>M/M/m/0</em> system with <em>m</em>
servers and no queue.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>A</var></code></dt>
<dd><p>Offered load, defined as <em>A = \lambda / \mu</em> where
<em>\lambda</em> is the mean arrival rate and <em>\mu</em> the mean
service rate of each individual server (real, <em>A > 0</em>).
</p>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of identical servers (integer, <em>m ≥ 1</em>). Default <em>m = 1</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>B</var></code></dt>
<dd><p>The value <em>E_B(A, m)</em>
</p>
</dd>
</dl>
<p><var>A</var> or <var>m</var> can be vectors, and in this case, the results will
be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Zeng, <cite>Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function</cite>, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
</li></ul>
<br>
<p><strong>See also:</strong> erlangc,engset,qsmmm.
</p>
</dd></dl>
<hr>
<span id="The-Erlang_002dC-Formula"></span><div class="header">
<p>
Next: <a href="#The-Engset-Formula" accesskey="n" rel="next">The Engset Formula</a>, Previous: <a href="#The-Erlang_002dB-Formula" accesskey="p" rel="prev">The Erlang-B Formula</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-Erlang_002dC-Formula-1"></span><h3 class="section">4.4 The Erlang-C Formula</h3>
<span id="doc_002derlangc"></span>
<dl>
<dt id="index-erlangc">Function File: <em><var>C</var> =</em> <strong>erlangc</strong> <em>(<var>A</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-Erlang_002dC-formula"></span>
<p>Compute the steady-state probability of delay in the Erlang delay model.
</p>
<p>The Erlang-C formula <em>E_C(A, m)</em> gives the probability that an
open queueing system with <em>m</em> identical servers, infinite
wating space, arrival rate <em>\lambda</em>, individual service rate
<em>\mu</em> and offered load <em>A = \lambda / \mu</em> has all the
servers busy. This is the waiting probability in an
<em>M/M/m/\infty</em> system with <em>m</em> servers and an infinite
queue.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>A</var></code></dt>
<dd><p>Offered load. <em>A = \lambda / \mu</em> where
<em>\lambda</em> is the mean arrival rate and <em>\mu</em> the mean
service rate of each individual server (real, <em>0 < A < m</em>).
</p>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of identical servers (integer, <em>m ≥ 1</em>).
Default <em>m = 1</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>B</var></code></dt>
<dd><p>The value <em>E_C(A, m)</em>
</p>
</dd>
</dl>
<p><var>A</var> or <var>m</var> can be vectors, and in this case, the results will
be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Zeng, <cite>Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function</cite>, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
</li></ul>
<br>
<p><strong>See also:</strong> erlangb,engset,qsmmm.
</p>
</dd></dl>
<hr>
<span id="The-Engset-Formula"></span><div class="header">
<p>
Next: <a href="#The-M_002fM_002finf-System" accesskey="n" rel="next">The M/M/inf System</a>, Previous: <a href="#The-Erlang_002dC-Formula" accesskey="p" rel="prev">The Erlang-C Formula</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-Engset-Formula-1"></span><h3 class="section">4.5 The Engset Formula</h3>
<span id="doc_002dengset"></span>
<dl>
<dt id="index-engset">Function File: <em><var>B</var> =</em> <strong>engset</strong> <em>(<var>A</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd>
<span id="index-Engset-loss-formula"></span>
<p>Evaluate the Engset loss formula.
</p>
<p>The Engset formula computes the blocking probability
<em>P_b(A,m,n)</em> for a system with a finite population of <em>n</em>
users, <em>m</em> identical servers, no queue, individual service
rate <em>\mu</em>, individual arrival rate <em>\lambda</em> (i.e., the
time until a user tries to request service is exponentially
distributed with mean <em>1/\lambda</em>), and offered load
<em>A=\lambda/\mu</em>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>A</var></code></dt>
<dd><p>Offered load, defined as <em>A = \lambda / \mu</em> where
<em>\lambda</em> is the mean arrival rate and <em>\mu</em> the mean
service rate of each individual server (real, <em>A > 0</em>).
</p>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of identical servers (integer, <em>m ≥ 1</em>). Default <em>m = 1</em>
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of requests (integer, <em>n ≥ 1</em>). Default <em>n = 1</em>
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>B</var></code></dt>
<dd><p>The value <em>P_b(A, m, n)</em>
</p>
</dd>
</dl>
<p><var>A</var>, <var>m</var> or <em>n</em> can be vectors, and in this case, the
results will be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Zeng, <cite>Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function</cite>, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
</li></ul>
<br>
<p><strong>See also:</strong> erlangb, erlangc.
</p>
</dd></dl>
<hr>
<span id="The-M_002fM_002finf-System"></span><div class="header">
<p>
Next: <a href="#The-M_002fM_002f1_002fK-System" accesskey="n" rel="next">The M/M/1/K System</a>, Previous: <a href="#The-Engset-Formula" accesskey="p" rel="prev">The Engset Formula</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fM_002finf-System-1"></span><h3 class="section">4.6 The <em>M/M/</em>inf System</h3>
<p>The <em>M/M/\infty</em> system is a special case of <em>M/M/m</em> system
with infinitely many identical servers (i.e., <em>m = \infty</em>). Each
new request is always assigned to a new server, so that queueing never
occurs. The <em>M/M/\infty</em> system is always stable.
</p>
<span id="doc_002dqsmminf"></span>
<dl>
<dt id="index-qsmminf">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] =</em> <strong>qsmminf</strong> <em>(<var>lambda</var>, <var>mu</var>)</em></dt>
<dt id="index-qsmminf-1">Function File: <em><var>pk</var> =</em> <strong>qsmminf</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>k</var>)</em></dt>
<dd>
<p>Compute utilization, response time, average number of requests and throughput for an infinite-server queue.
</p>
<p>The <em>M/M/\infty</em> system has an infinite number of identical
servers. Such a system is always stable (i.e., the mean queue
length is always finite) for any arrival and service rates.
</p>
<span id="index-M_002fM_002finf-system"></span>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var>>0</code>).
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p>Service rate (<code><var>mu</var>>0</code>).
</p>
</dd>
<dt><code><var>k</var></code></dt>
<dd><p>Number of requests in the system (<code><var>k</var> ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Traffic intensity (defined as <em>\lambda/\mu</em>). Note that this is
different from the utilization, which in the case of <em>M/M/\infty</em>
centers is always zero.
</p>
<span id="index-traffic-intensity"></span>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center response time.
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system (which is equal to the
traffic intensity <em>\lambda/\mu</em>).
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Throughput (which is always equal to <code><var>X</var> = <var>lambda</var></code>).
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Steady-state probability that there are no requests in the system
</p>
</dd>
<dt><code><var>pk</var></code></dt>
<dd><p>Steady-state probability that there are <var>k</var> requests in the
system (including the one being served).
</p>
</dd>
</dl>
<p>If this function is called with less than three arguments,
<var>lambda</var> and <var>mu</var> can be vectors of the same size. In this
case, the results will be vectors as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998, Section 6.4
</li></ul>
<br>
<p><strong>See also:</strong> qsmm1,qsmmm,qsmmmk.
</p>
</dd></dl>
<hr>
<span id="The-M_002fM_002f1_002fK-System"></span><div class="header">
<p>
Next: <a href="#The-M_002fM_002fm_002fK-System" accesskey="n" rel="next">The M/M/m/K System</a>, Previous: <a href="#The-M_002fM_002finf-System" accesskey="p" rel="prev">The M/M/inf System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fM_002f1_002fK-System-1"></span><h3 class="section">4.7 The <em>M/M/1/K</em> System</h3>
<p>In a <em>M/M/1/K</em> finite capacity system there is a single server,
and there can be at most <em>K</em> jobs at any time (including the job
currently in service), <em>K > 1</em>. If a new request tries to join
the system when there are already <em>K</em> other requests, the request
is lost. The queue has <em>K-1</em> slots. The <em>M/M/1/K</em> system is
always stable, regardless of the arrival and service rates.
</p>
<span id="doc_002dqsmm1k"></span>
<dl>
<dt id="index-qsmm1k">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] =</em> <strong>qsmm1k</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>K</var>)</em></dt>
<dt id="index-qsmm1k-1">Function File: <em><var>pn</var> =</em> <strong>qsmm1k</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>K</var>, <var>n</var>)</em></dt>
<dd>
<span id="index-M_002fM_002f1_002fK-system"></span>
<p>Compute utilization, response time, average number of requests and
throughput for a <em>M/M/1/K</em> finite capacity system.
</p>
<p>In a <em>M/M/1/K</em> queue there is a single server and a queue with
finite capacity: the maximum number of requests in the system
(including the request being served) is <em>K</em>, and the maximum
queue length is therefore <em>K-1</em>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var>>0</code>).
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p>Service rate (<code><var>mu</var>>0</code>).
</p>
</dd>
<dt><code><var>K</var></code></dt>
<dd><p>Maximum number of requests allowed in the system (<code><var>K</var> ≥ 1</code>).
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of requests in the (<code>0 ≤ <var>n</var> ≤ K</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Service center utilization, which is defined as <code><var>U</var> = 1-<var>p0</var></code>
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Service center throughput
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Steady-state probability that there are no requests in the system
</p>
</dd>
<dt><code><var>pK</var></code></dt>
<dd><p>Steady-state probability that there are <em>K</em> requests in the system
(i.e., that the system is full)
</p>
</dd>
<dt><code><var>pn</var></code></dt>
<dd><p>Steady-state probability that there are <em>n</em> requests in the system
(including the one being served).
</p>
</dd>
</dl>
<p>If this function is called with less than four arguments,
<var>lambda</var>, <var>mu</var> and <var>K</var> can be vectors of the
same size. In this case, the results will be vectors as well.
</p>
<br>
<p><strong>See also:</strong> qsmm1,qsmminf,qsmmm.
</p>
</dd></dl>
<hr>
<span id="The-M_002fM_002fm_002fK-System"></span><div class="header">
<p>
Next: <a href="#The-Asymmetric-M_002fM_002fm-System" accesskey="n" rel="next">The Asymmetric M/M/m System</a>, Previous: <a href="#The-M_002fM_002f1_002fK-System" accesskey="p" rel="prev">The M/M/1/K System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fM_002fm_002fK-System-1"></span><h3 class="section">4.8 The <em>M/M/m/K</em> System</h3>
<p>The <em>M/M/m/K</em> finite capacity system is similar to the
<em>M/M/1/k</em> system except that the number of servers is <em>m</em>,
where <em>1 \leq m \leq K</em>. The queue has <em>K-m</em> slots. The
<em>M/M/m/K</em> system is always stable.
</p>
<span id="doc_002dqsmmmk"></span>
<dl>
<dt id="index-qsmmmk">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] =</em> <strong>qsmmmk</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>m</var>, <var>K</var>)</em></dt>
<dt id="index-qsmmmk-1">Function File: <em><var>pn</var> =</em> <strong>qsmmmk</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>m</var>, <var>K</var>, <var>n</var>)</em></dt>
<dd>
<span id="index-M_002fM_002fm_002fK-system"></span>
<p>Compute utilization, response time, average number of requests and
throughput for a <em>M/M/m/K</em> finite capacity system. In a
<em>M/M/m/K</em> system there are <em>m \geq 1</em> identical service centers
sharing a fixed-capacity queue. At any time, at most <em>K ≥ m</em> requests can be in the system, including those being served. The maximum queue length
is <em>K-m</em>. This function generates and
solves the underlying CTMC.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var>>0</code>)
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p>Service rate (<code><var>mu</var>>0</code>)
</p>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of servers (<code><var>m</var> ≥ 1</code>)
</p>
</dd>
<dt><code><var>K</var></code></dt>
<dd><p>Maximum number of requests allowed in the system,
including those being served (<code><var>K</var> ≥ <var>m</var></code>)
</p>
</dd>
<dt><code><var>n</var></code></dt>
<dd><p>Number of requests in the (<code>0 ≤ <var>n</var> ≤ K</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Service center utilization
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Service center throughput
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Steady-state probability that there are no requests in the system.
</p>
</dd>
<dt><code><var>pK</var></code></dt>
<dd><p>Steady-state probability that there are <var>K</var> requests in the system
(i.e., probability that the system is full).
</p>
</dd>
<dt><code><var>pn</var></code></dt>
<dd><p>Steady-state probability that there are <var>n</var> requests in the system
(including those being served).
</p>
</dd>
</dl>
<p>If this function is called with less than five arguments,
<var>lambda</var>, <var>mu</var>, <var>m</var> and <var>K</var> can be either scalars, or
vectors of the same size. In this case, the results will be vectors
as well.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998, Section 6.6
</li></ul>
<br>
<p><strong>See also:</strong> qsmm1,qsmminf,qsmmm.
</p>
</dd></dl>
<hr>
<span id="The-Asymmetric-M_002fM_002fm-System"></span><div class="header">
<p>
Next: <a href="#The-M_002fG_002f1-System" accesskey="n" rel="next">The M/G/1 System</a>, Previous: <a href="#The-M_002fM_002fm_002fK-System" accesskey="p" rel="prev">The M/M/m/K System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-Asymmetric-M_002fM_002fm-System-1"></span><h3 class="section">4.9 The Asymmetric <em>M/M/m</em> System</h3>
<p>The Asymmetric <em>M/M/m</em> system contains <em>m</em> servers connected
to a single queue. Differently from the <em>M/M/m</em> system, in the
asymmetric <em>M/M/m</em> each server may have a different service time.
</p>
<span id="doc_002dqsammm"></span>
<dl>
<dt id="index-qsammm">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qsammm</strong> <em>(<var>lambda</var>, <var>mu</var>)</em></dt>
<dd>
<span id="index-asymmetric-M_002fM_002fm-system"></span>
<p>Compute <em>approximate</em> utilization, response time, average
number of requests in service and throughput for an asymmetric
<em>M/M/m</em> queue. In this type of system there are <em>m</em> different
servers connected to a single queue. Each server has its own
(possibly different) service rate. If there is more than one server
available, requests are routed to a randomly-chosen one.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate (<code><var>lambda</var>>0</code>)
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p><code><var>mu</var>(i)</code> is the service rate of server
<em>i</em>, <em>1 ≤ i ≤ m</em>.
The system must be ergodic (<code><var>lambda</var> < sum(<var>mu</var>)</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Approximate service center utilization,
<em>U = \lambda / ( \sum_{i=1}^m \mu_i )</em>.
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Approximate service center response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Approximate number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Approximate system throughput. If the system is ergodic,
<code><var>X</var> = <var>lambda</var></code>
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998
</li></ul>
<br>
<p><strong>See also:</strong> qsmmm.
</p>
</dd></dl>
<hr>
<span id="The-M_002fG_002f1-System"></span><div class="header">
<p>
Next: <a href="#The-M_002fHm_002f1-System" accesskey="n" rel="next">The M/Hm/1 System</a>, Previous: <a href="#The-Asymmetric-M_002fM_002fm-System" accesskey="p" rel="prev">The Asymmetric M/M/m System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fG_002f1-System-1"></span><h3 class="section">4.10 The <em>M/G/1</em> System</h3>
<span id="doc_002dqsmg1"></span>
<dl>
<dt id="index-qsmg1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] =</em> <strong>qsmg1</strong> <em>(<var>lambda</var>, <var>xavg</var>, <var>x2nd</var>)</em></dt>
<dd>
<span id="index-M_002fG_002f1-system"></span>
<p>Compute utilization, response time, average number of requests and
throughput for a <em>M/G/1</em> system. The service time distribution
is described by its mean <var>xavg</var>, and by its second moment
<var>x2nd</var>. The computations are based on results from L. Kleinrock,
<cite>Queuing Systems</cite>, Wiley, Vol 2, and Pollaczek-Khinchine formula.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate
</p>
</dd>
<dt><code><var>xavg</var></code></dt>
<dd><p>Average service time
</p>
</dd>
<dt><code><var>x2nd</var></code></dt>
<dd><p>Second moment of service time distribution
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Service center utilization
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Service center throughput
</p>
</dd>
<dt><code><var>p0</var></code></dt>
<dd><p>Probability that there is not any request at system
</p>
</dd>
</dl>
<p><var>lambda</var>, <var>xavg</var>, <var>t2nd</var> can be vectors of the
same size. In this case, the results will be vectors as well.
</p>
<br>
<p><strong>See also:</strong> qsmh1.
</p>
</dd></dl>
<hr>
<span id="The-M_002fHm_002f1-System"></span><div class="header">
<p>
Previous: <a href="#The-M_002fG_002f1-System" accesskey="p" rel="prev">The M/G/1 System</a>, Up: <a href="#Single-Station-Queueing-Systems" accesskey="u" rel="up">Single Station Queueing Systems</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="The-M_002fH_005fm_002f1-System"></span><h3 class="section">4.11 The <em>M/H_m/1</em> System</h3>
<span id="doc_002dqsmh1"></span>
<dl>
<dt id="index-qsmh1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] =</em> <strong>qsmh1</strong> <em>(<var>lambda</var>, <var>mu</var>, <var>alpha</var>)</em></dt>
<dd>
<span id="index-M_002fH_005fm_002f1-system"></span>
<p>Compute utilization, response time, average number of requests and
throughput for a <em>M/H_m/1</em> system. In this system, the customer
service times have hyper-exponential distribution:
</p>
<div class="example">
<pre class="example"> ___ m
\
B(x) = > alpha(j) * (1-exp(-mu(j)*x)) x>0
/__
j=1
</pre></div>
<p>where <em>\alpha_j</em> is the probability that the request is served
at phase <em>j</em>, in which case the average service rate is
<em>\mu_j</em>. After completing service at phase <em>j</em>, for
some <em>j</em>, the request exits the system.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate
</p>
</dd>
<dt><code><var>mu</var></code></dt>
<dd><p><code><var>mu</var>(j)</code> is the phase <em>j</em> service rate. The total
number of phases <em>m</em> is <code>length(<var>mu</var>)</code>.
</p>
</dd>
<dt><code><var>alpha</var></code></dt>
<dd><p><code><var>alpha</var>(j)</code> is the probability that a request
is served at phase <em>j</em>. <var>alpha</var> must have the same size
as <var>mu</var>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var></code></dt>
<dd><p>Service center utilization
</p>
</dd>
<dt><code><var>R</var></code></dt>
<dd><p>Service center response time
</p>
</dd>
<dt><code><var>Q</var></code></dt>
<dd><p>Average number of requests in the system
</p>
</dd>
<dt><code><var>X</var></code></dt>
<dd><p>Service center throughput
</p>
</dd>
</dl>
</dd></dl>
<hr>
<span id="Queueing-Networks"></span><div class="header">
<p>
Next: <a href="#References" accesskey="n" rel="next">References</a>, Previous: <a href="#Single-Station-Queueing-Systems" accesskey="p" rel="prev">Single Station Queueing Systems</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Queueing-Networks-1"></span><h2 class="chapter">5 Queueing Networks</h2>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Introduction-to-QNs" accesskey="1">Introduction to QNs</a></td><td> </td><td align="left" valign="top">A brief introduction to Queueing Networks
</td></tr>
<tr><td align="left" valign="top">• <a href="#Single-Class-Models" accesskey="2">Single Class Models</a></td><td> </td><td align="left" valign="top">Queueing models with a single job class
</td></tr>
<tr><td align="left" valign="top">• <a href="#Multiple-Class-Models" accesskey="3">Multiple Class Models</a></td><td> </td><td align="left" valign="top">Queueing models with multiple job classes
</td></tr>
<tr><td align="left" valign="top">• <a href="#Generic-Algorithms" accesskey="4">Generic Algorithms</a></td><td> </td><td align="left" valign="top">High-level functions for QN analysis
</td></tr>
<tr><td align="left" valign="top">• <a href="#Bounds-Analysis" accesskey="5">Bounds Analysis</a></td><td> </td><td align="left" valign="top">Computation of asymptotic performance bounds
</td></tr>
<tr><td align="left" valign="top">• <a href="#QN-Analysis-Examples" accesskey="6">QN Analysis Examples</a></td><td> </td><td align="left" valign="top">Queueing Networks analysis examples
</td></tr>
</table>
<span id="index-queueing-networks"></span>
<hr>
<span id="Introduction-to-QNs"></span><div class="header">
<p>
Next: <a href="#Single-Class-Models" accesskey="n" rel="next">Single Class Models</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Introduction-to-QNs-1"></span><h3 class="section">5.1 Introduction to QNs</h3>
<p>Queueing Networks (QN) are a simple modeling notation that can be used
to analyze many kinds of systems. In its simplest form, a QN is made
of <em>K</em> service centers; center <em>k</em> has a queue connected to
<em>m_k</em> (usually identical) servers. Arriving customers (requests)
join the queue if there is at least one slot available. Requests are
served according to a (de)queueing policy (e.g., FIFO). After service
completes, requests leave the server and can join another queue or
exit from the system.
</p>
<span id="index-delay-center"></span>
<span id="index-infinite-server"></span>
<p>Service centers where <em>m_k = \infty</em> are called <em>delay
centers</em> or <em>infinite servers</em>. In this kind of centers, there is
always one available server, so that queueing never occurs.
</p>
<p>Requests join the queue according to a <em>queueing policy</em>, such as:
</p>
<span id="index-First_002dCome_002dFirst_002dServed"></span>
<span id="index-FCFS"></span>
<span id="index-Last_002dCome_002dFirst_002dServed-Preemptive-Resume"></span>
<span id="index-LCFS_002dPR"></span>
<span id="index-Processor-Sharing"></span>
<span id="index-PS"></span>
<span id="index-Infinite-Server"></span>
<span id="index-IS"></span>
<dl compact="compact">
<dt><strong>FCFS</strong></dt>
<dd><p>First-Come-First-Served
</p>
</dd>
<dt><strong>LCFS-PR</strong></dt>
<dd><p>Last-Come-First-Served, Preemptive Resume
</p>
</dd>
<dt><strong>PS</strong></dt>
<dd><p>Processor Sharing
</p>
</dd>
<dt><strong>IS</strong></dt>
<dd><p>Infinite Server (<em>m_k = \infty</em>).
</p>
</dd>
</dl>
<p>Queueing networks can be <em>open</em> or <em>closed</em>. In open
networks there is an infinite population of requests; new customers
are generated outside the system, and eventually leave the network. In
closed networks there is a fixed population of request that never
leave the system.
</p>
<span id="index-single-class-queueing-network"></span>
<span id="index-multiple-class-queueing-network"></span>
<span id="index-queueing-network_002c-single-class"></span>
<span id="index-queueing-network_002c-multiple-class"></span>
<p>Queueing models can have a single request class (<em>single class
models</em>), meaning that all requests behave in the same way (e.g., they
spend the same average time on each particular server). In
<em>multiple class models</em> there are multiple request classes, each
with its own parameters (e.g., with different service times or
different routing probabilities). Furthermore, in multiclass models
there can be open and closed chains of requests at the same time.
</p>
<span id="index-product_002dform-queueing-network"></span>
<span id="index-queueing-network_002c-product_002dform"></span>
<p>A particular class of QN models, <em>product-form</em> networks, is of
particular interest. Product-form networks fulfill the following
assumptions:
</p>
<ul>
<li> The network can consist of open and closed job classes.
</li><li> The following queueing disciplines are allowed: FCFS, PS, LCFS-PR and IS.
</li><li> Service times for FCFS nodes must be exponentially distributed and
class-independent. Service centers at PS, LCFS-PR and IS nodes can
have any kind of service time distribution with a rational Laplace
transform. Furthermore, for PS, LCFS-PR and IS nodes, different
classes of customers can have different service times.
</li><li> The service rate of an FCFS node is only allowed to depend on the
number of jobs at this node; in a PS, LCFS-PR and IS node the service
rate for a particular job class can also depend on the number of jobs
of that class at the node.
</li><li> In open networks two kinds of arrival processes are allowed: i) the
arrival process is Poisson, with arrival rate <em>\lambda</em> that can
depend on the number of jobs in the network. ii) the arrival process
consists of <em>C</em> independent Poisson arrival streams where the
<em>C</em> job sources are assigned to the <em>C</em> chains; the arrival
rate can be load dependent.
</li></ul>
<p>Product-form networks are attractive because steady-state performance
measures can be efficiently computed.
</p>
<hr>
<span id="Single-Class-Models"></span><div class="header">
<p>
Next: <a href="#Multiple-Class-Models" accesskey="n" rel="next">Multiple Class Models</a>, Previous: <a href="#Introduction-to-QNs" accesskey="p" rel="prev">Introduction to QNs</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Single-Class-Models-1"></span><h3 class="section">5.2 Single Class Models</h3>
<span id="index-single-class-queueing-network-1"></span>
<span id="index-queueing-network_002c-single-class-1"></span>
<p>In single class models, all requests are indistinguishable and belong
to the same class. This means that every request has the same average
service time, and all requests move through the system with the same
routing probabilities.
</p>
<p><strong>Model Inputs</strong>
</p>
<span id="index-external-arrival-rate"></span>
<span id="index-service-time"></span>
<span id="index-routing-probability-matrix"></span>
<span id="index-average-number-of-visits"></span>
<dl compact="compact">
<dt><em>{lambda}_k</em></dt>
<dd><p>(Open models only) External arrival rate to service center <em>k</em>.
</p>
</dd>
<dt><em>lambda</em></dt>
<dd><p>(Open models only) Overall external arrival rate to the system as a whole: <em>\lambda = \sum_k \lambda_k</em>.
</p>
</dd>
<dt><em>N</em></dt>
<dd><p>(Closed models only) Total number of requests in the system.
</p>
</dd>
<dt><em>S_k</em></dt>
<dd><p>Mean service time at center <em>k</em>. <em>S_k</em> is the average time
elapsed from service start to service completion at center <em>k</em>.
</p>
</dd>
<dt><em>P_{i, j}</em></dt>
<dd><p>Routing probability matrix. <em>{\bf P} = [P_{i, j}]</em> is a <em>K
\times K</em> matrix where <em>P_{i, j}</em> is the probability that a
request completing service at center <em>i</em> is routed to center
<em>j</em>. The probability that a request leaves the system after being
served at center <em>i</em> is <em>\left(1-\sum_{j=1}^K P_{i, j}\right)</em>.
</p>
</dd>
<dt><em>V_k</em></dt>
<dd><p>Mean number of visits to center <em>k</em> (also called <em>visit
ratio</em> or <em>relative arrival rate</em>).
</p>
</dd>
</dl>
<p><strong>Model Outputs</strong>
</p>
<span id="index-utilization"></span>
<span id="index-response-time"></span>
<span id="index-average-number-of-customers"></span>
<span id="index-throughput"></span>
<span id="index-system-response-time"></span>
<span id="index-system-throughput"></span>
<dl compact="compact">
<dt><em>U_k</em></dt>
<dd><p>Utilization of service center <em>k</em>. The utilization is defined as
the fraction of time in which the resource is busy (i.e., the server
is processing requests). If center <em>k</em> is a single-server or
multiserver node, then <em>0 ≤ U_k ≤ 1</em>. If center
<em>k</em> is an infinite server node (delay center), then <em>U_k</em>
denotes the <em>traffic intensity</em> and is defined as <em>U_k = X_k
S_k</em>; in this case the utilization may be greater than one.
</p>
</dd>
<dt><em>R_k</em></dt>
<dd><p>Average response time of service center <em>k</em>, defined as the mean
time between the arrival of a request in the queue and service
completion of the same request.
</p>
</dd>
<dt><em>Q_k</em></dt>
<dd><p>Average number of requests in center <em>k</em>; this includes both the
requests in the queue and those being served.
</p>
</dd>
<dt><em>X_k</em></dt>
<dd><p>Throughput of service center <em>k</em>. The throughput is the rate of
job completions, i.e., the average number of jobs completed over a
given time interval.
</p>
</dd>
</dl>
<p>Given the output parameters above, additional performance measures can
be computed:
</p>
<dl compact="compact">
<dt><em>X</em></dt>
<dd><p>System throughput, <em>X = X_k / V_k</em> for any <em>k</em> for
which <em>V_k \neq 0</em>
</p>
</dd>
<dt><em>R</em></dt>
<dd><p>System response time, <em>R = \sum_{k=1}^K R_k V_k</em>
</p>
</dd>
<dt><em>Q</em></dt>
<dd><p>Average number of requests in the system, <em>Q = \sum_{k=1}^K Q_k</em>; for
closed systems, this can be written as <em>Q = N-XZ</em>;
</p>
</dd>
</dl>
<p>For open, single class models, the scalar <em>\lambda</em> denotes the
external arrival rate of requests to the system. The average number of
visits <em>V_j</em> satisfy the following equation:
</p>
<div class="example">
<pre class="example"> K
___
\
V_j = P_(0, j) + > V_i P_(i, j) j=1,...,K
/___
i=1
</pre></div>
<p>where <em>P_{0, j}</em> is the probability that an external
request goes to center <em>j</em>. If we denote with <em>\lambda_j</em>
the external arrival rate to center <em>j</em>, and <em>\lambda =
\sum_j \lambda_j</em> the overall external arrival rate, then <em>P_{0,
j} = \lambda_j / \lambda</em>.
</p>
<p>For closed models, the visit ratios satisfy the following equation:
</p>
<div class="example">
<pre class="example">/
| K
| ___
| \
| V_j = > V_i P_(i, j) j=1,...,K
| /___
| i=1
|
| V_r = 1 for a selected reference station r
\
</pre></div>
<p>Note that the set of traffic equations <em>V_j = \sum_{i=1}^K V_i
P_{i, j}</em> alone can only be solved up to a multiplicative constant; to
get a unique solution we impose an additional constraint <em>V_r =
1</em> for some <em>1 ≤ r ≤ K</em>. This constraint is equivalent
to defining station <em>r</em> as the <em>reference station</em>; the
default is <em>r=1</em>, see <a href="#doc_002dqncsvisits">doc-qncsvisits</a>. A job that returns to
the reference station is assumed to have completed its activity
cycle. The network throughput is set to the throughput of the
reference station.
</p>
<span id="doc_002dqncsvisits"></span>
<dl>
<dt id="index-qncsvisits">Function File: <em><var>V</var> =</em> <strong>qncsvisits</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-qncsvisits-1">Function File: <em><var>V</var> =</em> <strong>qncsvisits</strong> <em>(<var>P</var>, <var>r</var>)</em></dt>
<dd>
<p>Compute the mean number of visits to the service centers of a
single class, closed network with <em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>probability that a request which completed service at center
<em>i</em> is routed to center <em>j</em> (<em>K \times K</em> matrix).
For closed networks it must hold that <code>sum(<var>P</var>,2)==1</code>. The
routing graph must be strongly connected, meaning that each node
must be reachable from every other node.
</p>
</dd>
<dt><code><var>r</var></code></dt>
<dd><p>Index of the reference station, <em>r \in {1, …, K}</em>;
Default <code><var>r</var>=1</code>. The traffic equations are solved by
imposing the condition <code><var>V</var>(r) = 1</code>. A request returning to
the reference station completes its activity cycle.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to service center <em>k</em>, assuming
<em>r</em> as the reference station.
</p>
</dd>
</dl>
</dd></dl>
<span id="doc_002dqnosvisits"></span>
<dl>
<dt id="index-qnosvisits">Function File: <em><var>V</var> =</em> <strong>qnosvisits</strong> <em>(<var>P</var>, <var>lambda</var>)</em></dt>
<dd>
<p>Compute the average number of visits to the service centers of a single
class open Queueing Network with <em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>is the probability that a request which completed service at center
<em>i</em> is routed to center <em>j</em> (<em>K \times K</em> matrix).
</p>
</dd>
<dt><code><var>lambda</var>(k)</code></dt>
<dd><p>external arrival rate to center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to server <em>k</em>.
</p>
</dd>
</dl>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<div class="float"><span id="fig_003aqn_005fclosed_005fsingle"></span>
<div align="center"><img src="qn_closed_single.png" alt="qn_closed_single">
</div>
<div class="float-caption"><p><strong>Figure 5.1: </strong>Closed network with a single class of requests</p></div></div>
<p><a href="#fig_003aqn_005fclosed_005fsingle">Figure 5.1</a> shows a closed queueing network with a
single class of requests. The network has three service centers,
labeled <em>CPU</em>, <em>Disk1</em> and <em>Disk2</em>, and is known as a
<em>central server</em> model of a computer system. Requests spend some
time at the CPU, which is represented by a PS (Processor Sharing)
node. After that, requests are routed to Disk1 with probability
<em>0.3</em>, and to Disk2 with probability <em>0.7</em>. Both Disk1 and
Disk2 are FCFS nodes.
</p>
<p>If we label the servers as CPU=1, Disk1=2, Disk2=3, we can define the
routing matrix as follows:
</p>
<div class="example">
<pre class="example"> / 0 0.3 0.7 \
P = | 1 0 0 |
\ 1 0 0 /
</pre></div>
<p>The visit ratios <em>V</em>, using station 1 as the reference
station, can be computed with:
</p>
<div class="example">
<pre class="verbatim"> P = [0 0.3 0.7; ...
1 0 0 ; ...
1 0 0 ];
V = qncsvisits(P)
</pre><pre class="example"> ⇒ V = 1.00000 0.30000 0.70000
</pre></div>
<p><strong>EXAMPLE</strong>
</p>
<div class="float"><span id="fig_003aqn_005fopen_005fsingle"></span>
<div align="center"><img src="qn_open_single.png" alt="qn_open_single">
</div>
<div class="float-caption"><p><strong>Figure 5.2: </strong>Open Queueing Network with a single class of requests</p></div></div>
<p><a href="#fig_003aqn_005fopen_005fsingle">Figure 5.2</a> shows a open QN with a single class of
requests. The network has the same structure as the one in
<a href="#fig_003aqn_005fclosed_005fsingle">Figure 5.1</a>, with the difference that here we have a
stream of jobs arriving from outside the system, at a rate
<em>\lambda</em>. After service completion at the CPU, a job can leave
the system with probability <em>0.2</em>, or be transferred to other
nodes with the probabilities shown in the figure.
</p>
<p>The routing matrix is
</p>
<div class="example">
<pre class="example"> / 0 0.3 0.5 \
P = | 1 0 0 |
\ 1 0 0 /
</pre></div>
<p>If we let <em>\lambda = 1.2</em>, we can compute the visit ratios
<em>V</em> as follows:
</p>
<div class="example">
<pre class="verbatim"> p = 0.3;
lambda = 1.2
P = [0 0.3 0.5; 1 0 0; 1 0 0];
V = qnosvisits(P,[1.2 0 0])
</pre><pre class="example"> ⇒ V = 5.0000 1.5000 2.5000
</pre></div>
<p>Function <code>qnosvisits</code> expects a vector with <em>K</em> elements
as a second parameter, for open networks only. The vector contains the
arrival rates at each individual node; since in our example external
arrivals exist only for node <em>S_1</em> with rate <em>\lambda =
1.2</em>, the second parameter is <code>[1.2, 0, 0]</code>.
</p>
<span id="Open-Networks"></span><h4 class="subsection">5.2.1 Open Networks</h4>
<p>Jackson networks satisfy the following conditions:
</p>
<ul>
<li> There is only one job class in the network; the total number of jobs
in the system is unbounded.
</li><li> There are <em>K</em> service centers in the network. Each service center
may have Poisson arrivals from outside the system. A job can leave
the system from any node.
</li><li> Arrival rates as well as routing probabilities are independent from
the number of nodes in the network.
</li><li> External arrivals and service times at the service centers are
exponentially distributed, and in general can be load-dependent.
</li><li> Service discipline at each node is FCFS
</li></ul>
<p>We define the <em>joint probability vector</em> <em>\pi(n_1,
…, n_K)</em> as the steady-state probability that there are <em>n_k</em>
requests at service center <em>k</em>, for all <em>k=1, …, N</em>.
Jackson networks have the property that the joint probability is the
product of the marginal probabilities <em>\pi_k</em>:
</p>
<div class="example">
<pre class="example"><var>joint_prob</var> = prod( <var>pi</var> )
</pre></div>
<p>where <em>\pi_k(n_k)</em> is the steady-state probability
that there are <em>n_k</em> requests at service center <em>k</em>.
</p>
<span id="doc_002dqnos"></span>
<dl>
<dt id="index-qnos">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnos</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qnos-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnos</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-open-network_002c-single-class"></span>
<span id="index-BCMP-network"></span>
<p>Analyze open, single class BCMP queueing networks with <em>K</em> service centers.
</p>
<p>This function works for a subset of BCMP single-class open networks
satisfying the following properties:
</p>
<ul>
<li> The allowed service disciplines at network nodes are: FCFS,
PS, LCFS-PR, IS (infinite server);
</li><li> Service times are exponentially distributed and
load-independent;
</li><li> Center <em>k</em> can consist of <code><var>m</var>(k) ≥ 1</code>
identical servers.
</li><li> Routing is load-independent
</li></ul>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Overall external arrival rate (<code><var>lambda</var>>0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>average service time at center <em>k</em> (<code><var>S</var>(k)>0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>i</em>. If <code><var>m</var>(k) < 1</code>,
enter <em>k</em> is a delay center (IS); otherwise it is a regular
queueing center with <code><var>m</var>(k)</code> servers. Default is
<code><var>m</var>(k) = 1</code> for all <em>k</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>If <em>k</em> is a queueing center,
<code><var>U</var>(k)</code> is the utilization of center <em>k</em>.
If <em>k</em> is an IS node, then <code><var>U</var>(k)</code> is the
<em>traffic intensity</em> defined as <code><var>X</var>(k)*<var>S</var>(k)</code>.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>center <em>k</em> average response time.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests at center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>k</em> throughput.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications</cite>, Wiley, 1998
</li></ul>
<br>
<p><strong>See also:</strong> qnopen,qnclosed,qnosvisits.
</p>
</dd></dl>
<p>From the results computed by this function, it is possible to derive
other quantities of interest as follows:
</p>
<ul>
<li> <strong>System Response Time</strong>: The overall system response time
can be computed as
<code>R_s = dot(V,R);</code>
</li><li> <strong>Average number of requests</strong>: The average number of requests
in the system can be computed as:
<code>Q_avg = sum(Q)</code>
</li></ul>
<p><strong>EXAMPLE</strong>
</p>
<div class="example">
<pre class="verbatim"> lambda = 3;
V = [16 7 8];
S = [0.01 0.02 0.03];
[U R Q X] = qnos( lambda, S, V );
R_s = dot(R,V) # System response time
N = sum(Q) # Average number in system
</pre><pre class="example">-| R_s = 1.4062
-| N = 4.2186
</pre></div>
<span id="Closed-Networks"></span><h4 class="subsection">5.2.2 Closed Networks</h4>
<span id="doc_002dqncsmva"></span>
<dl>
<dt id="index-qncsmva">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsmva-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncsmva-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029"></span>
<span id="index-closed-network_002c-single-class"></span>
<span id="index-normalization-constant"></span>
<p>Analyze closed, single class queueing networks using the exact Mean Value Analysis (MVA) algorithm.
</p>
<p>The following queueing disciplines are supported: FCFS, LCFS-PR, PS
and IS (Infinite Server). This function supports fixed-rate service
centers or multiple server nodes. For general load-dependent service
centers, use the function <code>qncsmvald</code> instead.
</p>
<p>Additionally, the normalization constant <em>G(n)</em>, <em>n=0,
…, N</em> is computed; <em>G(n)</em> can be used in conjunction with
the BCMP theorem to compute steady-state probabilities.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Population size (number of requests in the system, <code><var>N</var> ≥ 0</code>).
If <code><var>N</var> == 0</code>, this function returns
<code><var>U</var> = <var>R</var> = <var>Q</var> = <var>X</var> = 0</code>
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em> (<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to service center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay for customers (<code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em> (if <var>m</var> is a scalar, all
centers have that number of servers). If <code><var>m</var>(k) < 1</code>,
center <em>k</em> is a delay center (IS); otherwise it is a regular
queueing center (FCFS, LCFS-PR or PS) with <code><var>m</var>(k)</code>
servers. Default is <code><var>m</var>(k) = 1</code> for all <em>k</em> (each
service center has a single server).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>If <em>k</em> is a FCFS, LCFS-PR or PS node (<code><var>m</var>(k) ≥
1</code>), then <code><var>U</var>(k)</code> is the utilization of center <em>k</em>,
<em>0 ≤ U(k) ≤ 1</em>. If <em>k</em> is an IS node
(<code><var>m</var>(k) < 1</code>), then <code><var>U</var>(k)</code> is the <em>traffic
intensity</em> defined as <code><var>X</var>(k)*<var>S</var>(k)</code>. In this case the
value of <code><var>U</var>(k)</code> may be greater than one.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>center <em>k</em> response time. The <em>Residence Time</em> at center
<em>k</em> is <code><var>R</var>(k) * <var>V</var>(k)</code>. The system response
time <var>Rsys</var> can be computed either as <code><var>Rsys</var> =
<var>N</var>/<var>Xsys</var> - Z</code> or as <code><var>Rsys</var> =
dot(<var>R</var>,<var>V</var>)</code>
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests at center <em>k</em>. The number of
requests in the system can be computed either as
<code>sum(<var>Q</var>)</code>, or using the formula
<code><var>N</var>-<var>Xsys</var>*<var>Z</var></code>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>K</em> throughput. The system throughput <var>Xsys</var> can be
computed as <code><var>Xsys</var> = <var>X</var>(1) / <var>V</var>(1)</code>
</p>
</dd>
<dt><code><var>G</var>(n)</code></dt>
<dd><p>Normalization constants. <code><var>G</var>(n+1)</code> contains the value of
the normalization constant <em>G(n)</em>, <em>n=0, …, N</em> as
array indexes in Octave start from 1. <em>G(n)</em> can be used in
conjunction with the BCMP theorem to compute steady-state
probabilities.
</p>
</dd>
</dl>
<p><strong>NOTES</strong>
</p>
<p>In presence of load-dependent servers (i.e., if <code><var>m</var>(k)>1</code>
for some <em>k</em>), the MVA algorithm is known to be numerically
unstable. Generally, this issue manifests itself as negative values
for the response times or utilizations. This is not a problem of
the <code>queueing</code> toolbox, but of the MVA algorithm, and has
currently no known solution. This function prints a warning if
numerical problems are detected; the warning can be disabled with
the command <code>warning("off", "qn:numerical-instability")</code>.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> M. Reiser and S. S. Lavenberg, <cite>Mean-Value Analysis of Closed
Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April
1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">10.1145/322186.322195</a>
</li></ul>
<p>This implementation is described in R. Jain , <cite>The Art of
Computer Systems Performance Analysis</cite>, Wiley, 1991, p. 577.
Multi-server nodes are treated according to G. Bolch, S. Greiner,
H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science
Applications</cite>, Wiley, 1998, Section 8.2.1, "Single Class Queueing
Networks".
</p>
<br>
<p><strong>See also:</strong> qncsmvald,qncscmva.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<div class="example">
<pre class="verbatim"> S = [ 0.125 0.3 0.2 ];
V = [ 16 10 5 ];
N = 20;
m = ones(1,3);
Z = 4;
[U R Q X] = qncsmva(N,S,V,m,Z);
X_s = X(1)/V(1); # System throughput
R_s = dot(R,V); # System response time
printf("\t Util Qlen RespT Tput\n");
printf("\t-------- -------- -------- --------\n");
for k=1:length(S)
printf("Dev%d\t%8.4f %8.4f %8.4f %8.4f\n", k, U(k), Q(k), R(k), X(k) );
endfor
printf("\nSystem\t %8.4f %8.4f %8.4f\n\n", N-X_s*Z, R_s, X_s );
</pre></div>
<span id="doc_002dqncsmvald"></span>
<dl>
<dt id="index-qncsmvald">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvald</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsmvald-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvald</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029-1"></span>
<span id="index-MVA"></span>
<span id="index-closed-network_002c-single-class-1"></span>
<span id="index-load_002ddependent-service-center"></span>
<p>Mean Value Analysis algorithm for closed, single class queueing
networks with <em>K</em> service centers and load-dependent service
times. This function supports FCFS, LCFS-PR, PS and IS nodes. For
networks with only fixed-rate centers and multiple-server
nodes, the function <code>qncsmva</code> is more efficient.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Population size (number of requests in the system, <code><var>N</var> ≥ 0</code>).
If <code><var>N</var> == 0</code>, this function returns <code><var>U</var> = <var>R</var> = <var>Q</var> = <var>X</var> = 0</code>
</p>
</dd>
<dt><code><var>S</var>(k,n)</code></dt>
<dd><p>mean service time at center <em>k</em>
where there are <em>n</em> requests, <em>1 ≤ n
≤ N</em>. <code><var>S</var>(k,n)</code> <em>= 1 / \mu_{k}(n)</em>,
where <em>\mu_{k}(n)</em> is the service rate of center <em>k</em>
when there are <em>n</em> requests.
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to service center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>external delay ("think time", <code><var>Z</var> ≥ 0</code>); default 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>utilization of service center <em>k</em>. The
utilization is defined as the probability that service center
<em>k</em> is not empty, that is, <em>U_k = 1-\pi_k(0)</em> where
<em>\pi_k(0)</em> is the steady-state probability that there are 0
jobs at service center <em>k</em>.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>response time on service center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests in service center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>throughput of service center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>NOTES</strong>
</p>
<p>In presence of load-dependent servers, the MVA algorithm is known
to be numerically unstable. Generally this problem manifests itself
as negative response times or utilization.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> M. Reiser and S. S. Lavenberg, <cite>Mean-Value Analysis of Closed
Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2,
April 1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">10.1145/322186.322195</a>
</li></ul>
<p>This implementation is described in G. Bolch, S. Greiner, H. de Meer
and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998, Section 8.2.4.1, “Networks with Load-Dependent Service: Closed
Networks”.
</p>
<br>
<p><strong>See also:</strong> qncsmva.
</p>
</dd></dl>
<span id="doc_002dqncscmva"></span>
<dl>
<dt id="index-qncscmva">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncscmva</strong> <em>(<var>N</var>, <var>S</var>, <var>Sld</var>, <var>V</var>)</em></dt>
<dt id="index-qncscmva-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncscmva</strong> <em>(<var>N</var>, <var>S</var>, <var>Sld</var>, <var>V</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-conditional-MVA-_0028CMVA_0029"></span>
<span id="index-Mean-Value-Analysis_002c-conditional-_0028CMVA_0029"></span>
<span id="index-closed-network_002c-single-class-2"></span>
<span id="index-CMVA"></span>
<p>Conditional MVA (CMVA) algorithm, a numerically stable variant of
MVA. This function supports a network of <em>M ≥ 1</em> service
centers and a single delay center. Servers <em>1, …, (M-1)</em>
are load-independent; server <em>M</em> is load-dependent.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Number of requests in the system, <code><var>N</var> ≥ 0</code>. If
<code><var>N</var> == 0</code>, this function returns <code><var>U</var> = <var>R</var>
= <var>Q</var> = <var>X</var> = 0</code>
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time on server <em>k = 1, …, (M-1)</em>
(<code><var>S</var>(k) > 0</code>). If there are no fixed-rate servers, then
<code>S = []</code>
</p>
</dd>
<dt><code><var>Sld</var>(n)</code></dt>
<dd><p>inverse service rate at server <em>M</em> (the load-dependent server)
when there are <em>n</em> requests, <em>n=1, …, N</em>.
<code><var>Sld</var>(n) = </code> <em>1 / \mu(n)</em>.
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to service center <em>k=1, …, M</em>,
where <code><var>V</var>(k) ≥ 0</code>. <code><var>V</var>(1:M-1)</code> are the
visit rates to the fixed rate servers; <code><var>V</var>(M)</code> is the
visit rate to the load dependent server.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay for customers (<code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>center <em>k</em> utilization (<em>k=1, …, M</em>)
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>response time of center <em>k</em> (<em>k=1, …, M</em>). The
system response time <var>Rsys</var> can be computed as <code><var>Rsys</var>
= <var>N</var>/<var>Xsys</var> - Z</code>
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests at center <em>k</em> (<em>k=1, …, M</em>).
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>k</em> throughput (<em>k=1, …, M</em>).
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Casale. <cite>A note on stable flow-equivalent aggregation in
closed networks</cite>. Queueing Syst. Theory Appl., 60:193–-202, December
2008, <a href="http://dx.doi.org/10.1007/s11134-008-9093-6">10.1007/s11134-008-9093-6</a>
</li></ul>
</dd></dl>
<span id="doc_002dqncsmvaap"></span>
<dl>
<dt id="index-qncsmvaap">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvaap</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsmvaap-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvaap</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncsmvaap-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvaap</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dt id="index-qncsmvaap-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvaap</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>, <var>tol</var>)</em></dt>
<dt id="index-qncsmvaap-4">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvaap</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>, <var>tol</var>, <var>iter_max</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate"></span>
<span id="index-MVA_002c-approximate"></span>
<span id="index-approximate-MVA"></span>
<span id="index-closed-network_002c-single-class-3"></span>
<span id="index-closed-network_002c-approximate-analysis"></span>
<p>Analyze closed, single class queueing networks using the Approximate
Mean Value Analysis (MVA) algorithm. This function is based on
approximating the number of customers seen at center <em>k</em> when a
new request arrives as <em>Q_k(N) \times (N-1)/N</em>. This function
only handles single-server and delay centers; if your network
contains general load-dependent service centers, use the function
<code>qncsmvald</code> instead.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Population size (number of requests in the system, <code><var>N</var> > 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time on server <em>k</em>
(<code><var>S</var>(k)>0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to service center
<em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>
(if <var>m</var> is a scalar, all centers have that number of servers). If
<code><var>m</var>(k) < 1</code>, center <em>k</em> is a delay center (IS); if
<code><var>m</var>(k) == 1</code>, center <em>k</em> is a regular queueing
center (FCFS, LCFS-PR or PS) with one server (default). This function
does not support multiple server nodes (<code><var>m</var>(k) > 1</code>).
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay for customers (<code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
<dt><code><var>tol</var></code></dt>
<dd><p>Stopping tolerance. The algorithm stops when the maximum relative
difference between the new and old value of the queue lengths
<var>Q</var> becomes less than the tolerance. Default is <em>10^{-5}</em>.
</p>
</dd>
<dt><code><var>iter_max</var></code></dt>
<dd><p>Maximum number of iterations (<code><var>iter_max</var>>0</code>.
The function aborts if convergenge is not reached within the maximum
number of iterations. Default is 100.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>If <em>k</em> is a FCFS, LCFS-PR or PS node (<code><var>m</var>(k) == 1</code>),
then <code><var>U</var>(k)</code> is the utilization of center <em>k</em>. If
<em>k</em> is an IS node (<code><var>m</var>(k) < 1</code>), then
<code><var>U</var>(k)</code> is the <em>traffic intensity</em> defined as
<code><var>X</var>(k)*<var>S</var>(k)</code>.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>response time at center <em>k</em>.
The system response time <var>Rsys</var>
can be computed as <code><var>Rsys</var> = <var>N</var>/<var>Xsys</var> - Z</code>
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests at center <em>k</em>. The number of
requests in the system can be computed either as
<code>sum(<var>Q</var>)</code>, or using the formula
<code><var>N</var>-<var>Xsys</var>*<var>Z</var></code>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>k</em> throughput. The system throughput <var>Xsys</var> can be
computed as <code><var>Xsys</var> = <var>X</var>(1) / <var>V</var>(1)</code>
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<p>This implementation is based on Edward D. Lazowska, John Zahorjan,
G. Scott Graham, and Kenneth C. Sevcik, <cite>Quantitative System
Performance: Computer System Analysis Using Queueing Network Models</cite>,
Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 6.4.2.2 ("Approximate Solution Techniques").
</p>
<br>
<p><strong>See also:</strong> qncsmva,qncsmvald.
</p>
</dd></dl>
<p>According to the BCMP theorem, the state probability of a closed
single class queueing network with <em>K</em> nodes and <em>N</em> requests
can be expressed as:
</p>
<div class="example">
<pre class="example">n = [n1, … nK]; <span class="roman">population vector</span>
p = 1/G(N+1) \prod F(k,k);
</pre></div>
<p>Here <em>\pi(n_1, …, n_K)</em> is the joint probability of
having <em>n_k</em> requests at node <em>k</em>, for all <em>k=1,
…, K</em>; we have that <em>\sum_{k=1}^K n_k = N</em>
</p>
<p>The <em>convolution algorithms</em> computes the normalization constants
<em>{\bf G} = \left[G(0), …, G(N)\right]</em> for single-class,
closed networks with <em>N</em> requests. The normalization constants
are returned as vector <code><var>G</var>=[<var>G</var>(1), …
<var>G</var>(N+1)]</code> where <code><var>G</var>(i+1)</code> is the value of <em>G(i)</em>
(remember that Octave uses 1-base vectors). The normalization constant
can be used to compute all performance measures of interest
(utilization, average response time and so on).
</p>
<p><code>queueing</code> implements the convolution algorithm, in the function
<code>qncsconv</code> and <code>qncsconvld</code>. The first one
supports single-station nodes, multiple-station nodes and IS nodes.
The second one supports networks with general load-dependent service
centers.
</p>
<span id="doc_002dqncsconv"></span>
<dl>
<dt id="index-qncsconv">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsconv</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsconv-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsconv</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-closed-network_002c-single-class-4"></span>
<span id="index-normalization-constant-1"></span>
<span id="index-convolution-algorithm"></span>
<p>Analyze product-form, single class closed networks with <em>K</em> service centers using the convolution algorithm.
</p>
<p>Load-independent service centers, multiple servers (<em>M/M/m</em>
queues) and IS nodes are supported. For general load-dependent
service centers, use <code>qncsconvld</code> instead.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Number of requests in the system (<code><var>N</var>>0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>average service time on center <em>k</em> (<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>visit count of service center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. If <code><var>m</var>(k) < 1</code>,
center <em>k</em> is a delay center (IS); if <code><var>m</var>(k) ≥
1</code>, center <em>k</em> it is a regular <em>M/M/m</em> queueing center
with <code><var>m</var>(k)</code> identical servers. Default is
<code><var>m</var>(k) = 1</code> for all <em>k</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUT</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>center <em>k</em> utilization.
For IS nodes, <code><var>U</var>(k)</code> is the <em>traffic intensity</em>
<code><var>X</var>(k) * <var>S</var>(k)</code>.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>average response time of center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of customers at center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>throughput of center <em>k</em>.
</p>
</dd>
<dt><code><var>G</var>(n)</code></dt>
<dd><p>Vector of normalization constants. <code><var>G</var>(n+1)</code> contains the value of
the normalization constant with <em>n</em> requests
<em>G(n)</em>, <em>n=0, …, N</em>.
</p>
</dd>
</dl>
<p><strong>NOTE</strong>
</p>
<p>For a network with <em>K</em> service centers and <em>N</em> requests,
this implementation of the convolution algorithm has time and space
complexity <em>O(NK)</em>.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Jeffrey P. Buzen, <cite>Computational Algorithms for Closed Queueing
Networks with Exponential Servers</cite>, Communications of the ACM, volume
16, number 9, September 1973,
pp. 527–531. <a href="http://doi.acm.org/10.1145/362342.362345">10.1145/362342.362345</a>
</li></ul>
<p>This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998, pp. 313–317.
</p>
<br>
<p><strong>See also:</strong> qncsconvld.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>The normalization constant <em>G</em> can be used to compute the
steady-state probabilities for a closed single class product-form
Queueing Network with <em>K</em> nodes and <em>N</em> requests. Let
<code><var>n</var> = [<em>n_1, …, n_K</em>]</code> be a valid
population vector, <em>\sum_{k=1}^K n_k = N</em>. Then, the steady-state
probability <code><var>p</var>(k)</code> to have <code><var>n</var>(k)</code> requests at
service center <em>k</em> can be computed as:
</p>
<div class="example">
<pre class="verbatim"> n = [1 2 0];
N = sum(n); # Total population size
S = [ 1/0.8 1/0.6 1/0.4 ];
m = [ 2 3 1 ];
V = [ 1 .667 .2 ];
[U R Q X G] = qncsconv( N, S, V, m );
p = [0 0 0]; # initialize p
# Compute the probability to have n(k) jobs at service center k
for k=1:3
p(k) = (V(k)*S(k))^n(k) / G(N+1) * ...
(G(N-n(k)+1) - V(k)*S(k)*G(N-n(k)) );
printf("Prob( n(%d) = %d )=%f\n", k, n(k), p(k) );
endfor
</pre><pre class="example">-| Prob( n(1) = 1 ) = 0.17975
-| Prob( n(2) = 2 ) = 0.48404
-| Prob( n(3) = 0 ) = 0.52779
</pre></div>
<p>(recall that <code><var>G</var>(<var>N</var>+1)</code> represents <em>G(N)</em>, since
in Octave array indices start at one).
</p>
<span id="doc_002dqncsconvld"></span>
<dl>
<dt id="index-qncsconvld">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] =</em> <strong>qncsconvld</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dd>
<span id="index-closed-network"></span>
<span id="index-normalization-constant-2"></span>
<span id="index-convolution-algorithm-1"></span>
<span id="index-load_002ddependent-service-center-1"></span>
<p>Convolution algorithm for product-form, single-class closed
queueing networks with <em>K</em> general load-dependent service
centers.
</p>
<p>This function computes steady-state performance measures for
single-class, closed networks with load-dependent service centers
using the convolution algorithm; the normalization constants are also
computed. The normalization constants are returned as vector
<code><var>G</var>=[<var>G</var>(1), …, <var>G</var>(N+1)]</code> where
<code><var>G</var>(i+1)</code> is the value of <em>G(i)</em>.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>Number of requests in the system (<code><var>N</var>>0</code>).
</p>
</dd>
<dt><code><var>S</var>(k,n)</code></dt>
<dd><p>mean service time at center <em>k</em> where there are <em>n</em>
requests, <em>1 ≤ n ≤ N</em>. <code><var>S</var>(k,n)</code> <em>= 1 / \mu_{k,n}</em>, where <em>\mu_{k,n}</em> is the service rate of center
<em>k</em> when there are <em>n</em> requests.
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>visit count of service center <em>k</em>
(<code><var>V</var>(k) ≥ 0</code>). The length of <var>V</var> is the number of
servers <em>K</em> in the network.
</p>
</dd>
</dl>
<p><strong>OUTPUT</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>center <em>k</em> utilization.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>average response time at center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests in center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>k</em> throughput.
</p>
</dd>
<dt><code><var>G</var>(n)</code></dt>
<dd><p>Normalization constants (vector). <code><var>G</var>(n+1)</code>
corresponds to <em>G(n)</em>, as array indexes in Octave start
from 1.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Herb Schwetman, <cite>Some Computational Aspects of Queueing Network
Models</cite>, Technical Report
<a href="http://docs.lib.purdue.edu/cstech/285/">CSD-TR-354</a>, Department
of Computer Sciences, Purdue University, February 1981 (revised).
</li><li> M. Reiser, H. Kobayashi, <cite>On The Convolution Algorithm for
Separable Queueing Networks</cite>, In Proceedings of the 1976 ACM
SIGMETRICS Conference on Computer Performance Modeling Measurement and
Evaluation (Cambridge, Massachusetts, United States, March 29–31,
1976). SIGMETRICS ’76. ACM, New York, NY,
pp. 109–117. <a href="http://doi.acm.org/10.1145/800200.806187">10.1145/800200.806187</a>
</li></ul>
<p>This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998, pp. 313–317. Function <code>qncsconvld</code> is slightly
different from the version described in Bolch et al. because it
supports general load-dependent centers (while the version in the book
does not). The modification is in the definition of function
<code>F()</code> in <code>qncsconvld</code> which has been made similar to
function <em>f_i</em> defined in Schwetman, <cite>Some Computational
Aspects of Queueing Network Models</cite>.
</p>
<br>
<p><strong>See also:</strong> qncsconv.
</p>
</dd></dl>
<span id="Non-Product_002dForm-QNs-1"></span><h4 class="subsection">5.2.3 Non Product-Form QNs</h4>
<span id="Non-Product_002dForm-QNs"></span>
<span id="doc_002dqncsmvablo"></span>
<dl>
<dt id="index-qncsmvablo">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncsmvablo</strong> <em>(<var>N</var>, <var>S</var>, <var>M</var>, <var>P</var> )</em></dt>
<dd>
<span id="index-queueing-network-with-blocking"></span>
<span id="index-blocking-queueing-network"></span>
<span id="index-closed-network_002c-finite-capacity"></span>
<span id="index-MVABLO"></span>
<p>Approximate MVA algorithm for closed queueing networks with blocking.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>number of requests in the system. <var>N</var> must be strictly greater
than zero, and less than the overall network capacity: <code>0 <
<var>N</var> < sum(<var>M</var>)</code>.
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>average service time on server <em>k</em> (<code><var>S</var>(k) > 0</code>).
</p>
</dd>
<dt><code><var>M</var>(k)</code></dt>
<dd><p>capacity of center <em>k</em>. The capacity is the maximum number of requests in a service
center, including the request in service (<code><var>M</var>(k) ≥ 1</code>).
</p>
</dd>
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>probability that a request which completes
service at server <em>i</em> will be transferred to server <em>j</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>center <em>k</em> utilization.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>average response time of service center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of requests in service center <em>k</em> (including
the request in service).
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>center <em>k</em> throughput.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Ian F. Akyildiz, <cite>Mean Value Analysis for Blocking Queueing
Networks</cite>, IEEE Transactions on Software Engineering, vol. 14, n. 2,
april 1988, pp. 418–428. <a href="http://dx.doi.org/10.1109/32.4663">10.1109/32.4663</a>
</li></ul>
<br>
<p><strong>See also:</strong> qnopen, qnclosed.
</p>
</dd></dl>
<span id="doc_002dqnmarkov"></span>
<dl>
<dt id="index-qnmarkov">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnmarkov</strong> <em>(<var>lambda</var>, <var>S</var>, <var>C</var>, <var>P</var>)</em></dt>
<dt id="index-qnmarkov-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnmarkov</strong> <em>(<var>lambda</var>, <var>S</var>, <var>C</var>, <var>P</var>, <var>m</var>)</em></dt>
<dt id="index-qnmarkov-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnmarkov</strong> <em>(<var>N</var>, <var>S</var>, <var>C</var>, <var>P</var>)</em></dt>
<dt id="index-qnmarkov-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnmarkov</strong> <em>(<var>N</var>, <var>S</var>, <var>C</var>, <var>P</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-closed-network_002c-single-class-5"></span>
<span id="index-open-network_002c-single-class-1"></span>
<span id="index-closed-network_002c-finite-capacity-1"></span>
<span id="index-blocking-queueing-network-1"></span>
<span id="index-RS-blocking"></span>
<p>Compute utilization, response time, average queue length and
throughput for open or closed queueing networks with finite capacity
and a single class of requests.
Blocking type is Repetitive-Service (RS). This function explicitly
generates and solve the underlying Markov chain, and thus might
require a large amount of memory.
</p>
<p>More specifically, networks which can me analyzed by this
function have the following properties:
</p>
<ul>
<li> There exists only a single class of customers.
</li><li> The network has <em>K</em> service centers. Center
<em>k \in {1, …, K}</em>
has <em>m_k > 0</em> servers, and has a total (finite) capacity of
<em>C_k \geq m_k</em> which includes both buffer space and servers.
The buffer space at service center <em>k</em> is therefore
<em>C_k - m_k</em>.
</li><li> The network can be open, with external arrival rate to
center <em>k</em> equal to
<em>\lambda_k</em>, or closed with fixed
population size <em>N</em>. For closed networks, the population size
<em>N</em> must be strictly less than the network capacity:
<em>N < \sum_{k=1}^K C_k</em>.
</li><li> Average service times are load-independent.
</li><li> <em>P_{i, j}</em> is the probability that requests completing
execution at center <em>i</em> are transferred to
center <em>j</em>, <em>i \neq j</em>. For open networks, a request may leave the system
from any node <em>i</em> with probability <em>1-\sum_{j=1}^K P_{i, j}</em>.
</li><li> Blocking type is Repetitive-Service (RS). Service
center <em>j</em> is <em>saturated</em> if the number of requests is equal
to its capacity <em>C_j</em>. Under the RS blocking discipline,
a request completing service at center <em>i</em> which is being
transferred to a saturated server <em>j</em> is put back at the end of
the queue of <em>i</em> and will receive service again. Center <em>i</em>
then processes the next request in queue. External arrivals to a
saturated servers are dropped.
</li></ul>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var>(k)</code></dt>
<dt><code><var>N</var></code></dt>
<dd><p>If the first argument is a vector <var>lambda</var>, it is considered to be
the external arrival rate <code><var>lambda</var>(k) ≥ 0</code> to service center
<em>k</em> of an open network. If the first argument is a scalar, it is
considered as the population size <var>N</var> of a closed network; in this case
<var>N</var> must be strictly
less than the network capacity: <code><var>N</var> < sum(<var>C</var>)</code>.
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>average service time at service center <em>k</em>
</p>
</dd>
<dt><code><var>C</var>(k)</code></dt>
<dd><p>capacity of service center <em>k</em>. The capacity includes both
the buffer and server space <code><var>m</var>(k)</code>. Thus the buffer space is
<code><var>C</var>(k)-<var>m</var>(k)</code>.
</p>
</dd>
<dt><code><var>P</var>(i,j)</code></dt>
<dd><p>transition probability from service center
<em>i</em> to service center <em>j</em>.
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at service center
<em>k</em>. Note that <code><var>m</var>(k) ≥ <var>C</var>(k)</code> for each <var>k</var>.
If <var>m</var> is omitted, all service centers are assumed to have a
single server (<code><var>m</var>(k) = 1</code> for all <em>k</em>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>center <em>k</em> utilization.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>response time on service center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of customers in the
service center <em>k</em>, <em>including</em> the request in service.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>throughput of service center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>NOTES</strong>
</p>
<p>The space complexity of this implementation is <em>O(\prod_{k=1}^K (C_k + 1)^2)</em>. The time complexity is dominated by
the time needed to solve a linear system with <em>\prod_{k=1}^K (C_k + 1)</em> unknowns.
</p>
</dd></dl>
<hr>
<span id="Multiple-Class-Models"></span><div class="header">
<p>
Next: <a href="#Generic-Algorithms" accesskey="n" rel="next">Generic Algorithms</a>, Previous: <a href="#Single-Class-Models" accesskey="p" rel="prev">Single Class Models</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Multiple-Class-Models-1"></span><h3 class="section">5.3 Multiple Class Models</h3>
<span id="index-multiple-class-queueing-network-1"></span>
<span id="index-queueing-network_002c-multiple-class-1"></span>
<p>In multiple class queueing models, we assume that there exist <em>C</em>
different classes of requests. Each request from class <em>c</em> spends
on average time <em>S_{c, k}</em> in service at center <em>k</em>. For
open models, we denote with <em>{\bf \lambda} = \lambda_{c, k}</em> the
arrival rates, where <em>\lambda_{c, k}</em> is the external arrival
rate of class <em>c</em> requests at center <em>k</em>. For closed models,
we denote with <em>{\bf N} = \left[N_1, …, N_C\right]</em> the population
vector, where <em>N_c</em> is the number of class <em>c</em> requests in
the system.
</p>
<p>The transition probability matrix for multiple class networks is a
<em>C \times K \times C \times K</em> matrix <em>{\bf P} = [P_{r, i,
s, j}]</em> where <em>P_{r, i, s, j}</em> is the probability that a class
<em>r</em> request which completes service at center <em>i</em> will join
server <em>j</em> as a class <em>s</em> request.
</p>
<p>Model input and outputs can be adjusted by adding additional indexes
for the customer classes.
</p>
<p><strong>Model Inputs</strong>
</p>
<span id="index-external-arrival-rate-1"></span>
<span id="index-service-time-1"></span>
<span id="index-routing-probability-matrix-1"></span>
<span id="index-average-number-of-visits-1"></span>
<dl compact="compact">
<dt><em>lambda_{c, k}</em></dt>
<dd><p>(open networks) External arrival rate of class-<em>c</em> requests to service center <em>k</em>
</p>
</dd>
<dt><em>lambda</em></dt>
<dd><p>(open networks) Overall external arrival rate to the whole system: <em>\lambda = \sum_{c=1}^C \sum_{k=1}^K \lambda_{c, k}</em>
</p>
</dd>
<dt><em>N_c</em></dt>
<dd><p>(closed networks) Number of class <em>c</em> requests in the system.
</p>
</dd>
<dt><em>S_{c, k}</em></dt>
<dd><p>Average service time. <em>S_{c, k}</em> is the average service time on
service center <em>k</em> for class <em>c</em> requests.
</p>
</dd>
<dt><em>P_{r, i, s, j}</em></dt>
<dd><p>Routing probability matrix. <em>{\bf P} = [P_{r, i, s, j}]</em> is a <em>C
\times K \times C \times K</em> matrix such that <em>P_{r, i, s, j}</em> is
the probability that a class <em>r</em> request which completes service
at server <em>i</em> will move to server <em>j</em> as a class <em>s</em>
request.
</p>
</dd>
<dt><em>V_{c, k}</em></dt>
<dd><p>Mean number of visits of class <em>c</em> requests to center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>Model Outputs</strong>
</p>
<span id="index-utilization-1"></span>
<span id="index-response-time-1"></span>
<span id="index-average-number-of-customers-1"></span>
<span id="index-throughput-1"></span>
<span id="index-system-response-time-1"></span>
<span id="index-system-throughput-1"></span>
<dl compact="compact">
<dt><em>U_{c, k}</em></dt>
<dd><p>Utilization of service center <em>k</em> by class <em>c</em> requests. The
utilization is defined as the fraction of time in which the resource
is busy (i.e., the server is processing requests). If center <em>k</em>
is a single-server or multiserver node, then
<em>0 ≤ U_{c, k} ≤ 1</em>.
If center <em>k</em> is an infinite server node (delay
center), then <em>U_{c, k}</em> denotes the <em>traffic intensity</em> and
is defined as <em>U_{c, k} = X_{c, k} S_{c, k}</em>; in this case the
utilization may be greater than one.
</p>
</dd>
<dt><em>R_{c, k}</em></dt>
<dd><p>Average response time experienced by class <em>c</em> requests on service
center <em>k</em>. The average response time is defined as the average
time between the arrival of a customer in the queue, and the completion
of service.
</p>
</dd>
<dt><em>Q_{c, k}</em></dt>
<dd><p>Average number of class <em>c</em> requests on service center
<em>k</em>. This includes both the requests in the queue, and the request
being served.
</p>
</dd>
<dt><em>X_{c, k}</em></dt>
<dd><p>Throughput of service center <em>k</em> for class <em>c</em> requests. The
throughput is defined as the rate of completion of class <em>c</em>
requests.
</p>
</dd>
</dl>
<p>It is possible to define aggregate performance measures as follows:
</p>
<dl compact="compact">
<dt><em>U_k</em></dt>
<dd><p>Utilization of service center <em>k</em>:
<code>Uk = sum(U,k);</code>
</p>
</dd>
<dt><em>R_c</em></dt>
<dd><p>System response time for class <em>c</em> requests:
<code>Rc = sum( V.*R, 1 );</code>
</p>
</dd>
<dt><em>Q_c</em></dt>
<dd><p>Average number of class <em>c</em> requests in the system:
<code>Qc = sum( Q, 2 );</code>
</p>
</dd>
<dt><em>X_c</em></dt>
<dd><p>Class <em>c</em> throughput:
<code>X(c) = X(c,k) ./ V(c,k);</code> for any <em>k</em> for which <code>V(c,k) != 0</code>
</p>
</dd>
</dl>
<p>For closed networks, we can define the visit ratios <em>V_{s, j}</em>
for class <em>s</em> customers at service center <em>j</em> as follows:
</p>
<p>V_sj = sum_r sum_i V_ri P_risj s=1,...,C, j=1,...,K
V_s r_s = 1 s=1,...,C
</p>
<p>where <em>r_s</em> is the class <em>s</em>
reference station. Similarly to single class models, the traffic
equation for closed multiclass networks can be solved up to
multiplicative constants unless we choose one reference station for
each closed class and set its visit ratio to 1.
</p>
<p>For open networks the traffic equations are as follows:
</p>
<p>V_sj = P_0sj + sum_r sum_i V_ri P_risj s=1,...,C, j=1,...,K
</p>
<p>where <em>P_{0, s, j}</em> is the probability that an external
arrival goes to service center <em>j</em> as a class-<em>s</em> request.
If <em>\lambda_{s, j}</em> is the external arrival rate of class
<em>s</em> requests to service center <em>j</em>, and <em>\lambda =
\sum_s \sum_j \lambda_{s, j}</em> is the overall external arrival rate,
then <em>P_{0, s, j} = \lambda_{s, j} / \lambda</em>.
</p>
<span id="doc_002dqncmvisits"></span>
<dl>
<dt id="index-qncmvisits">Function File: <em>[<var>V</var> <var>ch</var>] =</em> <strong>qncmvisits</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-qncmvisits-1">Function File: <em>[<var>V</var> <var>ch</var>] =</em> <strong>qncmvisits</strong> <em>(<var>P</var>, <var>r</var>)</em></dt>
<dd>
<p>Compute the average number of visits for the nodes of a closed multiclass network with <em>K</em> service centers and <em>C</em> customer classes.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(r,i,s,j)</code></dt>
<dd><p>probability that a
class <em>r</em> request which completed service at center <em>i</em> is
routed to center <em>j</em> as a class <em>s</em> request. Class switching
is allowed.
</p>
</dd>
<dt><code><var>r</var>(c)</code></dt>
<dd><p>index of class <em>c</em> reference station,
<em>r(c) \in {1, …, K}</em>, <em>1 ≤ c ≤ C</em>.
The class <em>c</em> visit count to server <code><var>r</var>(c)</code>
(<code><var>V</var>(c,r(c))</code>) is conventionally set to 1. The reference
station serves two purposes: (i) its throughput is assumed to be the
system throughput, and (ii) a job returning to the reference station
is assumed to have completed one cycle. Default is to consider
station 1 as the reference station for all classes.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>V</var>(c,i)</code></dt>
<dd><p>number of visits of class <em>c</em> requests at center <em>i</em>.
</p>
</dd>
<dt><code><var>ch</var>(c)</code></dt>
<dd><p>chain number that class <em>c</em> belongs
to. Different classes can belong to the same chain. Chains are
numbered sequentially starting from 1 (<em>1, 2, …</em>). The
total number of chains is <code>max(<var>ch</var>)</code>.
</p>
</dd>
</dl>
</dd></dl>
<span id="doc_002dqnomvisits"></span>
<dl>
<dt id="index-qnomvisits">Function File: <em><var>V</var> =</em> <strong>qnomvisits</strong> <em>(<var>P</var>, <var>lambda</var>)</em></dt>
<dd>
<p>Compute the visit ratios to the service centers of an open multiclass network with <em>K</em> service centers and <em>C</em> customer classes.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>P</var>(r,i,s,j)</code></dt>
<dd><p>probability that a class <em>r</em> request which completed service at center <em>i</em> is
routed to center <em>j</em> as a class <em>s</em> request. Class switching
is supported.
</p>
</dd>
<dt><code><var>lambda</var>(r,i)</code></dt>
<dd><p>external arrival rate of class <em>r</em> requests to center <em>i</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>V</var>(r,i)</code></dt>
<dd><p>visit ratio of class <em>r</em> requests at center <em>i</em>.
</p>
</dd>
</dl>
</dd></dl>
<span id="Open-Networks-1"></span><h4 class="subsection">5.3.1 Open Networks</h4>
<span id="doc_002dqnom"></span>
<dl>
<dt id="index-qnom">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnom</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qnom-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnom</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qnom-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnom</strong> <em>(<var>lambda</var>, <var>S</var>, <var>P</var>)</em></dt>
<dt id="index-qnom-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnom</strong> <em>(<var>lambda</var>, <var>S</var>, <var>P</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-open-network_002c-multiple-classes"></span>
<span id="index-multiclass-network_002c-open"></span>
<p>Exact analysis of open, multiple-class BCMP networks. The network can
be made of <em>single-server</em> queueing centers (FCFS, LCFS-PR or
PS) or delay centers (IS). This function assumes a network with
<em>K</em> service centers and <em>C</em> customer classes.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var>(c)</code></dt>
<dd><p>If this function is invoked as <code>qnom(lambda, S, V, …)</code>,
then <code><var>lambda</var>(c)</code> is the external arrival rate of class
<em>c</em> customers (<code><var>lambda</var>(c) ≥ 0</code>). If this
function is invoked as <code>qnom(lambda, S, P, …)</code>, then
<code><var>lambda</var>(c,k)</code> is the external arrival rate of class
<em>c</em> customers at center <em>k</em> (<code><var>lambda</var>(c,k)
≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c,k)</code></dt>
<dd><p>mean service time of class <em>c</em> customers on the service center
<em>k</em> (<code><var>S</var>(c,k)>0</code>). For FCFS nodes, mean service
times must be class-independent.
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>visit ratio of class <em>c</em> customers to service center <em>k</em>
(<code><var>V</var>(c,k) ≥ 0 </code>). <strong>If you pass this argument,
class switching is not allowed</strong>
</p>
</dd>
<dt><code><var>P</var>(r,i,s,j)</code></dt>
<dd><p>probability that a class <em>r</em> job completing service at center
<em>i</em> is routed to center <em>j</em> as a class <em>s</em> job.
<strong>If you pass argument <var>P</var>, class switching is allowed</strong>;
however, all servers must be fixed-rate or infinite-server nodes
(<code><var>m</var>(k) ≤ 1</code> for all <em>k</em>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. If <code><var>m</var>(k) < 1</code>,
enter <em>k</em> is a delay center (IS); otherwise it is a regular
queueing center with <code><var>m</var>(k)</code> servers. Default is
<code><var>m</var>(k) = 1</code> for all <em>k</em>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(c,k)</code></dt>
<dd><p>If <em>k</em> is a queueing center, then <code><var>U</var>(c,k)</code> is the
class <em>c</em> utilization of center <em>k</em>. If <em>k</em> is an IS
node, then <code><var>U</var>(c,k)</code> is the class <em>c</em> <em>traffic
intensity</em> defined as <code><var>X</var>(c,k)*<var>S</var>(c,k)</code>.
</p>
</dd>
<dt><code><var>R</var>(c,k)</code></dt>
<dd><p>class <em>c</em> response time at center <em>k</em>. The system
response time for class <em>c</em> requests can be computed as
<code>dot(<var>R</var>, <var>V</var>, 2)</code>.
</p>
</dd>
<dt><code><var>Q</var>(c,k)</code></dt>
<dd><p>average number of class <em>c</em> requests at center <em>k</em>. The
average number of class <em>c</em> requests in the system <var>Qc</var>
can be computed as <code>Qc = sum(<var>Q</var>, 2)</code>
</p>
</dd>
<dt><code><var>X</var>(c,k)</code></dt>
<dd><p>class <em>c</em> throughput at center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>NOTES</strong>
</p>
<p>If the function call specifies the visit ratios <var>V</var>,
class switching is <strong>not</strong> allowed. If the function call
specifies the routing probability matrix <var>P</var>, then class
switching <strong>is</strong> allowed; however, all nodes are
restricted to be fixed rate servers or delay centers:
multiple-server and general load-dependent centers are not
supported. Note that the meaning of parameter <var>lambda</var> is
different from one case to the other (see below).
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik, <cite>Quantitative System Performance: Computer System
Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 7.4.1 ("Open Model Solution Techniques").
</li></ul>
<br>
<p><strong>See also:</strong> qnopen,qnos,qnomvisits.
</p>
</dd></dl>
<span id="Closed-Networks-1"></span><h4 class="subsection">5.3.2 Closed Networks</h4>
<span id="doc_002dqncmpopmix"></span>
<dl>
<dt id="index-qncmpopmix">Function File: <em>pop_mix =</em> <strong>qncmpopmix</strong> <em>(<var>k</var>, <var>N</var>)</em></dt>
<dd>
<span id="index-population-mix"></span>
<span id="index-closed-network_002c-multiple-classes"></span>
<p>Return the set of population mixes for a closed multiclass queueing
network with exactly <var>k</var> customers. Specifically, given a
closed multiclass QN with <em>C</em> customer classes, where there
are <code><var>N</var>(c)</code> class <em>c</em> requests, <em>c = 1, …, C</em>
a <em>k</em>-mix <em>M</em> is a vector of length <em>C</em> with the following
properties:
</p>
<ul>
<li> <em>0 ≤ M_c ≤ <var>N</var>(c)</em> for all <em>c = 1, …, C</em>;
</li><li> <em>\sum_{c=1}^C M_c = k</em>
</li></ul>
<p>In other words, a <em>k</em>-mix is an allocation of <em>k</em>
requests to <em>C</em> classes such that the number of requests
assigned to class <em>c</em> does not exceed the maximum value
<code><var>N</var>(c)</code>.
</p>
<p><var>pop_mix</var> is a matrix with <em>C</em> columns, such
that each row represents a valid mix.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>k</var></code></dt>
<dd><p>Size of the requested mix (scalar, <code><var>k</var> ≥ 0</code>).
</p>
</dd>
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests (<code><var>k</var> ≤ sum(<var>N</var>)</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>pop_mix</var>(i,c)</code></dt>
<dd><p>number of class <em>c</em> requests in the <em>i</em>-th population
mix. The number of mixes is <code>rows(<var>pop_mix</var>)</code>.
</p>
</dd>
</dl>
<p>If you are interested in the number of <em>k</em>-mixes only, you can
use the funcion <code>qnmvapop</code>.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Herb Schwetman, <cite>Implementing the Mean Value Algorithm for the
Solution of Queueing Network Models</cite>, Technical Report
<a href="http://docs.lib.purdue.edu/cstech/286/">80-355</a>, Department of Computer
Sciences, Purdue University, revised February 15, 1982.
</li></ul>
<p>The slightly different problem of enumerating all tuples <em>k_1,
…, k_N</em> such that <em>\sum_i k_i = k</em> and <em>k_i
≥ 0</em>, for a given <em>k ≥ 0</em> has been described in
S. Santini, <cite>Computing the Indices for a Complex Summation</cite>,
unpublished report, available at
<a href="http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf">http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf</a>
</p>
<br>
<p><strong>See also:</strong> qncmnpop.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>Let us consider a multiclass network with <em>C=2</em> customer classes;
the maximum number of class 1 requests is 2, and the maximum number of
class 2 requests is 3. How is it possible to allocate 3 requests to
the two classes so that the maximum number of requests per class is
not exceeded?
</p>
<div class="example">
<pre class="verbatim"> N = [2 3];
mix = qncmpopmix(3, N)
</pre><pre class="example">-| mix = [ [2 1] [1 2] [0 3] ]
</pre></div>
<span id="doc_002dqncmnpop"></span>
<dl>
<dt id="index-qncmnpop">Function File: <em><var>H</var> =</em> <strong>qncmnpop</strong> <em>(<var>N</var>)</em></dt>
<dd>
<span id="index-population-mix-1"></span>
<span id="index-closed-network_002c-multiple-classes-1"></span>
<p>Given a network with <em>C</em> customer classes, this function
computes the number of <em>k</em>-mixes <code><var>H</var>(r,k)</code> that can
be constructed by the multiclass MVA algorithm by allocating
<em>k</em> customers to the first <em>r</em> classes.
See <a href="#doc_002dqncmpopmix">doc-qncmpopmix</a> for the definition of <em>k</em>-mix.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class-<em>c</em> requests in the system. The total number
of requests in the network is <code>sum(<var>N</var>)</code>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>H</var>(r,k)</code></dt>
<dd><p>is the number of <em>k</em> mixes that can be constructed allocating
<em>k</em> customers to the first <em>r</em> classes.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Zahorjan, J. and Wong, E. <cite>The solution of separable queueing
network models using mean value analysis</cite>. SIGMETRICS
Perform. Eval. Rev. 10, 3 (Sep. 1981), 80-85. DOI
<a href="http://doi.acm.org/10.1145/1010629.805477">10.1145/1010629.805477</a>
</li></ul>
<br>
<p><strong>See also:</strong> qncmmva,qncmpopmix.
</p>
</dd></dl>
<span id="doc_002dqncmmva"></span>
<dl>
<dt id="index-qncmmva">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var> )</em></dt>
<dt id="index-qncmmva-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncmmva-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncmmva-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dt id="index-qncmmva-4">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>P</var>)</em></dt>
<dt id="index-qncmmva-5">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>P</var>, <var>r</var>)</em></dt>
<dt id="index-qncmmva-6">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmva</strong> <em>(<var>N</var>, <var>S</var>, <var>P</var>, <var>r</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029-2"></span>
<span id="index-closed-network_002c-multiple-classes-2"></span>
<span id="index-multiclass-network_002c-closed"></span>
<p>Compute steady-state performance measures for closed, multiclass
queueing networks using the Mean Value Analysys (MVA) algorithm.
</p>
<p>Queueing policies at service centers can be any of the following:
</p>
<dl compact="compact">
<dt><strong>FCFS</strong></dt>
<dd><p>(First-Come-First-Served) customers are served in order of arrival;
multiple servers are allowed. For this kind of queueing discipline,
average service times must be class-independent.
</p>
</dd>
<dt><strong>PS</strong></dt>
<dd><p>(Processor Sharing) customers are served in parallel by a single
server, each customer receiving an equal share of the service rate.
</p>
</dd>
<dt><strong>LCFS-PR</strong></dt>
<dd><p>(Last-Come-First-Served, Preemptive Resume) customers are served in
reverse order of arrival by a single server and the last arrival
preempts the customer in service who will later resume service at the
point of interruption.
</p>
</dd>
<dt><strong>IS</strong></dt>
<dd><p>(Infinite Server) customers are delayed independently of other
customers at the service center (there is effectively an infinite
number of servers).
</p>
</dd>
</dl>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests; <code><var>N</var>(c) ≥ 0</code>. If
class <em>c</em> has no requests (<code><var>N</var>(c) == 0</code>), then for
all <var>k</var>, this function returns
<code><var>U</var>(c,k) = <var>R</var>(c,k) = <var>Q</var>(c,k) = <var>X</var>(c,k) = 0</code>
</p>
</dd>
<dt><code><var>S</var>(c,k)</code></dt>
<dd><p>mean service time for class <em>c</em> requests at center <em>k</em>
(<code><var>S</var>(c,k) ≥ 0</code>). If the service time at center
<em>k</em> is class-dependent, then center <em>k</em> is assumed
to be of type <em>-/G/1</em>–PS (Processor Sharing). If center
<em>k</em> is a FCFS node (<code><var>m</var>(k)>1</code>), then the service
times <strong>must</strong> be class-independent, i.e., all classes
<strong>must</strong> have the same service time.
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em> requests at
center <em>k</em>; <code><var>V</var>(c,k) ≥ 0</code>, default is 1.
<strong>If you pass this argument, class switching is not allowed</strong>
</p>
</dd>
<dt><code><var>P</var>(r,i,s,j)</code></dt>
<dd><p>probability that a class <em>r</em> request completing service at center
<em>i</em> is routed to center <em>j</em> as a class <em>s</em> request; the
reference stations for each class are specified with the paramter
<var>r</var>. <strong>If you pass argument <var>P</var>, class switching is
allowed</strong>; however, you can not specify any external delay (i.e.,
<var>Z</var> must be zero) and all servers must be fixed-rate or
infinite-server nodes (<code><var>m</var>(k) ≤ 1</code> for all
<em>k</em>).
</p>
</dd>
<dt><code><var>r</var>(c)</code></dt>
<dd><p>reference station for class <em>c</em>. If omitted, station 1 is the
reference station for all classes. See <code>qncmvisits</code>.
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>If <code><var>m</var>(k)<1</code>, then center <em>k</em> is assumed to be a delay
center (IS node <em>-/G/\infty</em>). If <code><var>m</var>(k)==1</code>, then
service center <em>k</em> is a regular queueing center
(<em>M/M/1</em>–FCFS, <em>-/G/1</em>–LCFS-PR or <em>-/G/1</em>–PS).
Finally, if <code><var>m</var>(k)>1</code>, center <em>k</em> is a
<em>M/M/m</em>–FCFS center with <code><var>m</var>(k)</code> identical servers.
Default is <code><var>m</var>(k)=1</code> for each <em>k</em>.
</p>
</dd>
<dt><code><var>Z</var>(c)</code></dt>
<dd><p>class <em>c</em> external delay (think time); <code><var>Z</var>(c) ≥
0</code>. Default is 0. This parameter can not be used if you pass a
routing matrix as the second parameter of <code>qncmmva</code>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(c,k)</code></dt>
<dd><p>If <em>k</em> is a FCFS, LCFS-PR or PS node (<code><var>m</var>(k) ≥
1</code>), then <code><var>U</var>(c,k)</code> is the class <em>c</em> utilization at
center <em>k</em>, <em>0 ≤ U(c,k) ≤ 1</em>. If <em>k</em> is an
IS node, then <code><var>U</var>(c,k)</code> is the class <em>c</em> <em>traffic
intensity</em> at center <em>k</em>, defined as <code><var>U</var>(c,k) =
<var>X</var>(c,k)*<var>S</var>(c,k)</code>. In this case the value of
<code><var>U</var>(c,k)</code> may be greater than one.
</p>
</dd>
<dt><code><var>R</var>(c,k)</code></dt>
<dd><p>class <em>c</em> response time at center <em>k</em>. The class <em>c</em>
<em>residence time</em> at center <em>k</em> is <code><var>R</var>(c,k) *
<var>C</var>(c,k)</code>. The total class <em>c</em> system response time is
<code>dot(<var>R</var>, <var>V</var>, 2)</code>.
</p>
</dd>
<dt><code><var>Q</var>(c,k)</code></dt>
<dd><p>average number of class <em>c</em> requests at center <em>k</em>. The
total number of requests at center <em>k</em> is
<code>sum(<var>Q</var>(:,k))</code>. The total number of class <em>c</em>
requests in the system is <code>sum(<var>Q</var>(c,:))</code>.
</p>
</dd>
<dt><code><var>X</var>(c,k)</code></dt>
<dd><p>class <em>c</em> throughput at center <em>k</em>. The class <em>c</em>
throughput can be computed as <code><var>X</var>(c,1) / <var>V</var>(c,1)</code>.
</p>
</dd>
</dl>
<p><strong>NOTES</strong>
</p>
<p>If the function call specifies the visit ratios <var>V</var>, then class
switching is <strong>not</strong> allowed. If the function call specifies
the routing probability matrix <var>P</var>, then class switching
<strong>is</strong> allowed; however, in this case all nodes are restricted
to be fixed rate servers or delay centers: multiple-server and
general load-dependent centers are not supported.
</p>
<p>In presence of load-dependent servers (e.g., if <code><var>m</var>(i)>1</code>
for some <em>i</em>), the MVA algorithm is known to be numerically
unstable. Generally this problem shows up as negative values for the
computed response times or utilizations. This is not a problem with the
<code>queueing</code> package, but with the MVA algorithm;
as such, there is no known workaround at the moment (aoart from using a
different solution technique, if available). This function prints a
warning if it detects numerical problems; you can disable the warning
with the command <code>warning("off", "qn:numerical-instability")</code>.
</p>
<p>Given a network with <em>K</em> service centers, <em>C</em> job classes
and population vector <em>{\bf N}=\left[N_1, …, N_C\right]</em>, the MVA
algorithm requires space <em>O(C \prod_i (N_i + 1))</em>. The time
complexity is <em>O(CK\prod_i (N_i + 1))</em>. This implementation is
slightly more space-efficient (see details in the code). While the
space requirement can be mitigated by using some optimizations, the
time complexity can not. If you need to analyze large closed networks
you should consider the <code>qncmmvaap</code> function, which implements
the approximate MVA algorithm. Note however that <code>qncmmvaap</code>
will only provide approximate results.
</p>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> M. Reiser and S. S. Lavenberg, <cite>Mean-Value Analysis of Closed
Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April
1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">10.1145/322186.322195</a>
</li></ul>
<p>This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998 and Edward D. Lazowska, John Zahorjan, G. Scott Graham, and
Kenneth C. Sevcik, <cite>Quantitative System Performance: Computer
System Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 7.4.2.1 ("Exact Solution Techniques").
</p>
<br>
<p><strong>See also:</strong> qnclosed, qncmmvaapprox, qncmvisits.
</p>
</dd></dl>
<span id="doc_002dqncmmvabs"></span>
<dl>
<dt id="index-qncmmvabs">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmvabs</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncmmvabs-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmvabs</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncmmvabs-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmvabs</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dt id="index-qncmmvabs-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmvabs</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>, <var>tol</var>)</em></dt>
<dt id="index-qncmmvabs-4">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qncmmvabs</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>, <var>tol</var>, <var>iter_max</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-1"></span>
<span id="index-MVA_002c-approximate-1"></span>
<span id="index-closed-network_002c-multiple-classes-3"></span>
<span id="index-multiclass-network_002c-closed-1"></span>
<p>Approximate Mean Value Analysis (MVA) for closed, multiclass
queueing networks with <em>K</em> service centers and <em>C</em>
customer classes.
</p>
<p>This implementation uses Bard and Schweitzer approximation. It is
based on the assumption that the queue length at service center
<em>k</em> with population set <em>{\bf N}-{\bf 1}_c</em> is
approximated with
</p>
<div class="example">
<pre class="example">Q_k(N-1c) ~ (n-1)/n Q_k(N)
</pre></div>
<p>where <em>\bf N</em> is a valid population mix, <em>{\bf N}-{\bf 1}_c</em>
is the population mix <em>\bf N</em> with one class <em>c</em> customer
removed, and <em>n = \sum_c N_c</em> is the total number of requests.
</p>
<p>This implementation works for networks with infinite server (IS)
and single-server nodes only.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests in the system (<code><var>N</var>(c) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c,k)</code></dt>
<dd><p>mean service time for class <em>c</em> customers at center <em>k</em>
(<code><var>S</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em> requests to center
<em>k</em> (<code><var>V</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. If <code><var>m</var>(k) < 1</code>,
then the service center <em>k</em> is assumed to be a delay center
(IS). If <code><var>m</var>(k) == 1</code>, service center <em>k</em> is a
regular queueing center (FCFS, LCFS-PR or PS) with a single server
node. If omitted, each service center has a single server. Note
that multiple server nodes are not supported.
</p>
</dd>
<dt><code><var>Z</var>(c)</code></dt>
<dd><p>class <em>c</em> external delay (<code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
<dt><code><var>tol</var></code></dt>
<dd><p>Stopping tolerance (<code><var>tol</var>>0</code>). The algorithm stops if
the queue length computed on two subsequent iterations are less than
<var>tol</var>. Default is <em>10^{-5}</em>.
</p>
</dd>
<dt><code><var>iter_max</var></code></dt>
<dd><p>Maximum number of iterations (<code><var>iter_max</var>>0</code>.
The function aborts if convergenge is not reached within the maximum
number of iterations. Default is 100.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(c,k)</code></dt>
<dd><p>If <em>k</em> is a FCFS, LCFS-PR or PS node, then <code><var>U</var>(c,k)</code>
is the utilization of class <em>c</em> requests on service center
<em>k</em>. If <em>k</em> is an IS node, then <code><var>U</var>(c,k)</code> is the
class <em>c</em> <em>traffic intensity</em> at device <em>k</em>,
defined as <code><var>U</var>(c,k) = <var>X</var>(c)*<var>S</var>(c,k)</code>
</p>
</dd>
<dt><code><var>R</var>(c,k)</code></dt>
<dd><p>response time of class <em>c</em> requests at service center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(c,k)</code></dt>
<dd><p>average number of class <em>c</em> requests at service center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(c,k)</code></dt>
<dd><p>class <em>c</em> throughput at service center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Y. Bard, <cite>Some Extensions to Multiclass Queueing Network Analysis</cite>,
proc. 4th Int. Symp. on Modelling and Performance Evaluation of
Computer Systems, Feb 1979, pp. 51–62.
</li><li> P. Schweitzer, <cite>Approximate Analysis of Multiclass Closed
Networks of Queues</cite>, Proc. Int. Conf. on Stochastic Control and
Optimization, jun 1979, pp. 25–29.
</li></ul>
<p>This implementation is based on Edward D. Lazowska, John Zahorjan, G.
Scott Graham, and Kenneth C. Sevcik, <cite>Quantitative System
Performance: Computer System Analysis Using Queueing Network Models</cite>,
Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 7.4.2.2 ("Approximate Solution
Techniques"). This implementation is slightly different from the one
described above, as it computes the average response times <em>R</em>
instead of the residence times.
</p>
<br>
<p><strong>See also:</strong> qncmmva.
</p>
</dd></dl>
<span id="Mixed-Networks"></span><h4 class="subsection">5.3.3 Mixed Networks</h4>
<span id="doc_002dqnmix"></span>
<dl>
<dt id="index-qnmix">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnmix</strong> <em>(<var>lambda</var>, <var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-Mean-Value-Analysys-_0028MVA_0029-3"></span>
<span id="index-mixed-network"></span>
<p>Mean Value Analysis for mixed queueing networks. The network
consists of <em>K</em> service centers (single-server or delay
centers) and <em>C</em> independent customer chains. Both open and
closed chains are possible. <var>lambda</var> is the vector of per-chain
arrival rates (open classes); <var>N</var> is the vector of populations
for closed chains.
</p>
<p>Class switching is <strong>not</strong> allowed. Each customer class
<em>must</em> correspond to an independent chain.
</p>
<p>If the network is made of open or closed classes only, then this
function calls <code>qnom</code> or <code>qncmmva</code> respectively, and
prints a warning message.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var>(c)</code></dt>
<dt><code><var>N</var>(c)</code></dt>
<dd><p>For each customer chain <em>c</em>:
</p>
<ul>
<li> if <em>c</em> is a closed chain, then <code><var>N</var>(c)>0</code> is the
number of class <em>c</em> requests and <code><var>lambda</var>(c)</code> must be
zero;
</li><li> If <em>c</em> is an open chain,
<code><var>lambda</var>(c)>0</code> is the arrival rate of class <em>c</em>
requests and <code><var>N</var>(c)</code> must be zero;
</li></ul>
<p>In other words, for each class <em>c</em> the following must hold:
</p>
<div class="example">
<pre class="example">(<var>lambda</var>(c)>0 && <var>N</var>(c)==0) || (<var>lambda</var>(c)==0 && <var>N</var>(c)>0)
</pre></div>
</dd>
<dt><code><var>S</var>(c,k)</code></dt>
<dd><p>mean class <em>c</em> service time at center <em>k</em>,
<code><var>S</var>(c,k) ≥ 0</code>. For FCFS nodes, service times must be
class-independent.
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em> customers to center
<em>k</em> (<code><var>V</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. Only single-server
(<code><var>m</var>(k)==1</code>) or IS (Infinite Server) nodes
(<code><var>m</var>(k)<1</code>) are supported. If omitted, each center is
assumed to be of type <em>M/M/1</em>-FCFS. Queueing discipline for
single-server nodes can be FCFS, PS or LCFS-PR.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(c,k)</code></dt>
<dd><p>class <em>c</em> utilization at center <em>k</em>.
</p>
</dd>
<dt><code><var>R</var>(c,k)</code></dt>
<dd><p>class <em>c</em> response time at center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(c,k)</code></dt>
<dd><p>average number of class <em>c</em> requests at center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(c,k)</code></dt>
<dd><p>class <em>c</em> throughput at center <em>k</em>.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik, <cite>Quantitative System Performance: Computer System
Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 7.4.3 ("Mixed Model Solution Techniques").
Note that in this function we compute the mean response time <em>R</em>
instead of the mean residence time as in the reference.
</li><li> Herb Schwetman, <cite>Implementing the Mean Value Algorithm for the
Solution of Queueing Network Models</cite>, Technical Report
<a href="http://docs.lib.purdue.edu/cstech/286/">CSD-TR-355</a>, Department
of Computer Sciences, Purdue University, revised Feb 15, 1982.
</li></ul>
<br>
<p><strong>See also:</strong> qncmmva, qncm.
</p>
</dd></dl>
<hr>
<span id="Generic-Algorithms"></span><div class="header">
<p>
Next: <a href="#Bounds-Analysis" accesskey="n" rel="next">Bounds Analysis</a>, Previous: <a href="#Multiple-Class-Models" accesskey="p" rel="prev">Multiple Class Models</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Generic-Algorithms-1"></span><h3 class="section">5.4 Generic Algorithms</h3>
<p>The <code>queueing</code> package provides a high-level function
<code>qnsolve</code> for analyzing QN models. <code>qnsolve</code> takes as
input a high-level description of the queueing model, and delegates
the actual solution of the model to one of the lower-level
function. <code>qnsolve</code> supports single or multiclass models, but at
the moment only product-form networks can be analyzed. For non
product-form networks See <a href="#Non-Product_002dForm-QNs">Non Product-Form QNs</a>.
</p>
<p><code>qnsolve</code> accepts two input parameters. The first one is the list
of nodes, encoded as an Octave <em>cell array</em>. The second parameter
is the vector of visit ratios <var>V</var>, which can be either a vector
(for single-class models) or a two-dimensional matrix (for
multiple-class models).
</p>
<p>Individual nodes in the network are structures build using the
<code>qnmknode</code> function.
</p>
<span id="doc_002dqnmknode"></span>
<dl>
<dt id="index-qnmknode">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"m/m/m-fcfs"</var>, <var>S</var>)</em></dt>
<dt id="index-qnmknode-1">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"m/m/m-fcfs"</var>, <var>S</var>, <var>m</var>)</em></dt>
<dt id="index-qnmknode-2">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"m/m/1-lcfs-pr"</var>, <var>S</var>)</em></dt>
<dt id="index-qnmknode-3">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"-/g/1-ps"</var>, <var>S</var>)</em></dt>
<dt id="index-qnmknode-4">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"-/g/1-ps"</var>, <var>S</var>, <var>s2</var>)</em></dt>
<dt id="index-qnmknode-5">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"-/g/inf"</var>, <var>S</var>)</em></dt>
<dt id="index-qnmknode-6">Function File: <em><var>Q</var> =</em> <strong>qnmknode</strong> <em>(<var>"-/g/inf"</var>, <var>S</var>, <var>s2</var>)</em></dt>
<dd>
<p>Creates a node; this function can be used together with
<code>qnsolve</code>. It is possible to create either single-class nodes
(where there is only one customer class), or multiple-class nodes
(where the service time is given per-class). Furthermore, it is
possible to specify load-dependent service times. String literals
are case-insensitive, so for example <var>"-/g/inf"</var>, <var>"-/G/inf"</var>
and <var>"-/g/INF"</var> are all equivalent.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>S</var></code></dt>
<dd><p>Mean service time.
</p>
<ul>
<li> If <em>S</em> is a scalar,
it is assumed to be a load-independent, class-independent service time.
</li><li> If <em>S</em> is a column vector, then <code><var>S</var>(c)</code> is assumed to
the the load-independent service time for class <em>c</em> customers.
</li><li> If <em>S</em> is a row vector, then <code><var>S</var>(n)</code> is assumed to be
the class-independent service time at the node, when there are <em>n</em>
requests.
</li><li> Finally, if <var>S</var> is a two-dimensional matrix, then
<code><var>S</var>(c,n)</code> is assumed to be the class <em>c</em> service time
when there are <em>n</em> requests at the node.
</li></ul>
</dd>
<dt><code><var>m</var></code></dt>
<dd><p>Number of identical servers at the node. Default is <code><var>m</var>=1</code>.
</p>
</dd>
<dt><code><var>s2</var></code></dt>
<dd><p>Squared coefficient of variation for the service time. Default is 1.0.
</p>
</dd>
</dl>
<p>The returned struct <var>Q</var> should be considered opaque to the client.
</p>
<br>
<p><strong>See also:</strong> qnsolve.
</p>
</dd></dl>
<p>After the network has been defined, it is possible to solve it using
<code>qnsolve</code>.
</p>
<span id="doc_002dqnsolve"></span>
<dl>
<dt id="index-qnsolve">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnsolve</strong> <em>(<var>"closed"</var>, <var>N</var>, <var>QQ</var>, <var>V</var>)</em></dt>
<dt id="index-qnsolve-1">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnsolve</strong> <em>(<var>"closed"</var>, <var>N</var>, <var>QQ</var>, <var>V</var>, <var>Z</var>)</em></dt>
<dt id="index-qnsolve-2">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnsolve</strong> <em>(<var>"open"</var>, <var>lambda</var>, <var>QQ</var>, <var>V</var>)</em></dt>
<dt id="index-qnsolve-3">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnsolve</strong> <em>(<var>"mixed"</var>, <var>lambda</var>, <var>N</var>, <var>QQ</var>, <var>V</var>)</em></dt>
<dd>
<p>High-level function for analyzing QN models.
</p>
<ul>
<li> For <strong>closed</strong> networks, the following server types are
supported: <em>M/M/m</em>–FCFS, <em>-/G/\infty</em>, <em>-/G/1</em>–LCFS-PR,
<em>-/G/1</em>–PS and load-dependent variants.
</li><li> For <strong>open</strong> networks, the following server types are supported:
<em>M/M/m</em>–FCFS, <em>-/G/\infty</em> and <em>-/G/1</em>–PS. General
load-dependent nodes are <em>not</em> supported. Multiclass open networks
do not support multiple server <em>M/M/m</em> nodes, but only
single server <em>M/M/1</em>–FCFS.
</li><li> For <strong>mixed</strong> networks, the following server types are supported:
<em>M/M/1</em>–FCFS, <em>-/G/\infty</em> and <em>-/G/1</em>–PS. General
load-dependent nodes are <em>not</em> supported.
</li></ul>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dt><code><var>N</var>(c)</code></dt>
<dd><p>Number of requests in the system for closed networks. For
single-class networks, <var>N</var> must be a scalar. For multiclass
networks, <code><var>N</var>(c)</code> is the population size of closed class
<em>c</em>.
</p>
</dd>
<dt><code><var>lambda</var></code></dt>
<dt><code><var>lambda</var>(c)</code></dt>
<dd><p>External arrival rate (scalar) for open networks. For single-class
networks, <var>lambda</var> must be a scalar. For multiclass networks,
<code><var>lambda</var>(c)</code> is the class <em>c</em> overall arrival rate.
</p>
</dd>
<dt><code><var>QQ</var>{i}</code></dt>
<dd><p>List of queues in the network. This must be a cell array
with <em>N</em> elements, such that <code><var>QQ</var>{i}</code> is
a struct produced by the <code>qnmknode</code> function.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay ("think time") for closed networks. Default 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>U</var>(k)</code></dt>
<dd><p>If <em>k</em> is a FCFS node, then <code><var>U</var>(k)</code> is the utilization
of service center <em>k</em>. If <em>k</em> is an IS node, then
<code><var>U</var>(k)</code> is the <em>traffic intensity</em> defined as
<code><var>X</var>(k)*<var>S</var>(k)</code>.
</p>
</dd>
<dt><code><var>R</var>(k)</code></dt>
<dd><p>average response time of service center <em>k</em>.
</p>
</dd>
<dt><code><var>Q</var>(k)</code></dt>
<dd><p>average number of customers in service center <em>k</em>.
</p>
</dd>
<dt><code><var>X</var>(k)</code></dt>
<dd><p>throughput of service center <em>k</em>.
</p>
</dd>
</dl>
<p>Note that for multiclass networks, the computed results are per-class
utilization, response time, number of customers and throughput:
<code><var>U</var>(c,k)</code>, <code><var>R</var>(c,k)</code>, <code><var>Q</var>(c,k)</code>,
<code><var>X</var>(c,k)</code>.
</p>
<p>String literals are case-insensitive, so <var>"closed"</var>, <var>"Closed"</var>
and <var>"CLoSEd"</var> are all equivalent.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<p>Let us consider a closed, multiclass network with <em>C=2</em> classes
and <em>K=3</em> service center. Let the population be <em>M=(2, 1)</em>
(class 1 has 2 requests, and class 2 has 1 request). The nodes are as
follows:
</p>
<ul>
<li> Node 1 is a <em>M/M/1</em>–FCFS node, with load-dependent service
times. Service times are class-independent, and are defined by the
matrix <code>[0.2 0.1 0.1; 0.2 0.1 0.1]</code>. Thus, <code><var>S</var>(1,2) =
0.2</code> means that service time for class 1 customers where there are 2
requests in 0.2. Note that service times are class-independent;
</li><li> Node 2 is a <em>-/G/1</em>–PS node, with service times
<em>S_{1, 2} = 0.4</em> for class 1, and <em>S_{2, 2} = 0.6</em> for class 2
requests;
</li><li> Node 3 is a <em>-/G/\infty</em> node (delay center), with service
times <em>S_{1, 3}=1</em> and <em>S_{2, 3}=2</em> for class 1 and 2
respectively.
</li></ul>
<p>After defining the per-class visit count <var>V</var> such that
<code><var>V</var>(c,k)</code> is the visit count of class <em>c</em> requests to
service center <em>k</em>. We can define and solve the model as
follows:
</p>
<div class="example">
<pre class="example">
</pre><pre class="verbatim"> QQ = { qnmknode( "m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1] ), ...
qnmknode( "-/g/1-ps", [0.4; 0.6] ), ...
qnmknode( "-/g/inf", [1; 2] ) };
V = [ 1 0.6 0.4; ...
1 0.3 0.7 ];
N = [ 2 1 ];
[U R Q X] = qnsolve( "closed", N, QQ, V );
</pre></div>
<span id="doc_002dqnclosed"></span>
<dl>
<dt id="index-qnclosed">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnclosed</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, …)</em></dt>
<dd>
<span id="index-closed-network_002c-single-class-6"></span>
<span id="index-closed-network_002c-multiple-classes-4"></span>
<p>This function computes steady-state performance measures of closed
queueing networks using the Mean Value Analysis (MVA) algorithm. The
qneneing network is allowed to contain fixed-capacity centers, delay
centers or general load-dependent centers. Multiple request
classes are supported.
</p>
<p>This function dispatches the computation to one of
<code>qncsemva</code>, <code>qncsmvald</code> or <code>qncmmva</code>.
</p>
<ul>
<li> If <var>N</var> is a scalar, the network is assumed to have a single
class of requests; in this case, the exact MVA algorithm is used to
analyze the network. If <var>S</var> is a vector, then <code><var>S</var>(k)</code>
is the average service time of center <em>k</em>, and this function
calls <code>qncsmva</code> which supports load-independent
service centers. If <var>S</var> is a matrix, <code><var>S</var>(k,i)</code> is the
average service time at center <em>k</em> when <em>i=1, …, N</em>
jobs are present; in this case, the network is analyzed with the
<code>qncmmvald</code> function.
</li><li> If <var>N</var> is a vector, the network is assumed to have multiple
classes of requests, and is analyzed using the exact multiclass
MVA algorithm as implemented in the <code>qncmmva</code> function.
</li></ul>
<br>
<p><strong>See also:</strong> qncsmva, qncsmvald, qncmmva.
</p>
</dd></dl>
<p><strong>EXAMPLE</strong>
</p>
<div class="example">
<pre class="verbatim"> P = [0 0.3 0.7; 1 0 0; 1 0 0]; # Transition probability matrix
S = [1 0.6 0.2]; # Average service times
m = ones(size(S)); # All centers are single-server
Z = 2; # External delay
N = 15; # Maximum population to consider
V = qncsvisits(P); # Compute number of visits
X_bsb_lower = X_bsb_upper = X_ab_lower = X_ab_upper = X_mva = zeros(1,N);
for n=1:N
[X_bsb_lower(n) X_bsb_upper(n)] = qncsbsb(n, S, V, m, Z);
[X_ab_lower(n) X_ab_upper(n)] = qncsaba(n, S, V, m, Z);
[U R Q X] = qnclosed( n, S, V, m, Z );
X_mva(n) = X(1)/V(1);
endfor
close all;
plot(1:N, X_ab_lower,"g;Asymptotic Bounds;", ...
1:N, X_bsb_lower,"k;Balanced System Bounds;", ...
1:N, X_mva,"b;MVA;", "linewidth", 2, ...
1:N, X_bsb_upper,"k", 1:N, X_ab_upper,"g" );
axis([1,N,0,1]); legend("location","southeast"); legend("boxoff");
xlabel("Number of Requests n"); ylabel("System Throughput X(n)");
</pre></div>
<span id="doc_002dqnopen"></span>
<dl>
<dt id="index-qnopen">Function File: <em>[<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] =</em> <strong>qnopen</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>, …)</em></dt>
<dd>
<span id="index-open-network"></span>
<p>Compute utilization, response time, average number of requests in the
system, and throughput for open queueing networks. If <var>lambda</var> is
a scalar, the network is considered a single-class QN and is solved
using <code>qnopensingle</code>. If <var>lambda</var> is a vector, the network
is considered as a multiclass QN and solved using <code>qnopenmulti</code>.
</p>
<br>
<p><strong>See also:</strong> qnos, qnom.
</p>
</dd></dl>
<hr>
<span id="Bounds-Analysis"></span><div class="header">
<p>
Next: <a href="#QN-Analysis-Examples" accesskey="n" rel="next">QN Analysis Examples</a>, Previous: <a href="#Generic-Algorithms" accesskey="p" rel="prev">Generic Algorithms</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Bounds-Analysis-1"></span><h3 class="section">5.5 Bounds Analysis</h3>
<span id="doc_002dqnosaba"></span>
<dl>
<dt id="index-qnosaba">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnosaba</strong> <em>(<var>lambda</var>, <var>D</var>)</em></dt>
<dt id="index-qnosaba-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnosaba</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qnosaba-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnosaba</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dd>
<span id="index-bounds_002c-asymptotic"></span>
<span id="index-open-network-1"></span>
<p>Compute Asymptotic Bounds for open, single-class networks with <em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>Arrival rate of requests (scalar, <code><var>lambda</var> ≥ 0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand at center <em>k</em>.
(vector of length <em>K</em>, <code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em>.
(vector of length <em>K</em>, <code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>mean number of visits to center <em>k</em>.
(vector of length <em>K</em>, <code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>.
This function only supports <em>M/M/1</em> queues, therefore
<var>m</var> must be <code>ones(size(S))</code>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bounds on the system throughput. <var>Xl</var> is
always set to <em>0</em> since there can be no lower bound on the
throughput of open networks (scalar).
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bounds on the system response time. <var>Ru</var>
is always set to <code>+inf</code> since there can be no upper bound on the
throughput of open networks (scalar).
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> qnomaba.
</p>
</dd></dl>
<span id="doc_002dqnomaba"></span>
<dl>
<dt id="index-qnomaba">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnomaba</strong> <em>(<var>lambda</var>, <var>D</var>)</em></dt>
<dt id="index-qnomaba-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Rl</var>] =</em> <strong>qnomaba</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>)</em></dt>
<dd>
<span id="index-bounds_002c-asymptotic-1"></span>
<span id="index-open-network-2"></span>
<span id="index-multiclass-network_002c-open-1"></span>
<p>Compute Asymptotic Bounds for open, multiclass networks with <em>K</em>
service centers and <em>C</em> customer classes.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var>(c)</code></dt>
<dd><p>class <em>c</em> arrival rate to the system (vector of length
<em>C</em>, <code><var>lambda</var>(c) > 0</code>).
</p>
</dd>
<dt><code><var>D</var>(c, k)</code></dt>
<dd><p>class <em>c</em> service demand at center <em>k</em> (<em>C \times K</em>
matrix, <code><var>D</var>(c, k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c, k)</code></dt>
<dd><p>mean service time of class <em>c</em> requests at center <em>k</em>
(<em>C \times K</em> matrix, <code><var>S</var>(c, k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(c, k)</code></dt>
<dd><p>mean number of visits of class <em>c</em> requests at center <em>k</em>
(<em>C \times K</em> matrix, <code><var>V</var>(c, k) ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var>(c)</code></dt>
<dt><code><var>Xu</var>(c)</code></dt>
<dd><p>lower and upper bounds of class <em>c</em> throughput.
<code><var>Xl</var>(c)</code> is always <em>0</em> since there can be no lower
bound on the throughput of open networks (vector of length
<em>C</em>).
</p>
</dd>
<dt><code><var>Rl</var>(c)</code></dt>
<dt><code><var>Ru</var>(c)</code></dt>
<dd><p>lower and upper bounds of class <em>c</em> response time.
<code><var>Ru</var>(c)</code> is always <code>+inf</code> since there can be no
upper bound on the response time of open networks (vector of length
<em>C</em>).
</p>
</dd>
</dl>
</dd></dl>
<span id="doc_002dqncsaba"></span>
<dl>
<dt id="index-qncsaba">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsaba</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncsaba-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsaba-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncsaba-3">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-bounds_002c-asymptotic-2"></span>
<span id="index-asymptotic-bounds"></span>
<span id="index-closed-network_002c-single-class-7"></span>
<p>Compute Asymptotic Bounds for the system throughput and response
time of closed, single-class networks with <em>K</em> service
centers.
</p>
<p>Single-server and infinite-server nodes are supported.
Multiple-server nodes and general load-dependent servers are not
supported.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>number of requests in the system (scalar, <code><var>N</var>>0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand at center <em>k</em>
(<code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em>
(<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to center
<em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>
(if <var>m</var> is a scalar, all centers have that number of servers). If
<code><var>m</var>(k) < 1</code>, center <em>k</em> is a delay center (IS);
if <code><var>m</var>(k) = 1</code>, center <em>k</em> is a M/M/1-FCFS server.
This function does not support multiple-server nodes. Default
is 1.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay (scalar, <code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bounds on the system throughput.
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bounds on the system response time.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> qncmaba.
</p>
</dd></dl>
<span id="doc_002dqncmaba"></span>
<dl>
<dt id="index-qncmaba">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmaba</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncmaba-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncmaba-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncmaba-3">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmaba</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-bounds_002c-asymptotic-3"></span>
<span id="index-asymptotic-bounds-1"></span>
<span id="index-closed-network-1"></span>
<span id="index-multiclass-network_002c-closed-2"></span>
<span id="index-closed-multiclass-network"></span>
<p>Compute Asymptotic Bounds for closed, multiclass networks
with <em>K</em> service centers and <em>C</em> customer classes.
Single-server and infinite-server nodes are supported.
Multiple-server nodes and general load-dependent servers are not
supported.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests in the system
(vector of length <em>C</em>, <code><var>N</var>(c) ≥ 0</code>).
</p>
</dd>
<dt><code><var>D</var>(c, k)</code></dt>
<dd><p>class <em>c</em> service demand
at center <em>k</em> (<em>C \times K</em> matrix, <code><var>D</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c, k)</code></dt>
<dd><p>mean service time of class <em>c</em>
requests at center <em>k</em> (<em>C \times K</em> matrix, <code><var>S</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em>
requests to center <em>k</em> (<em>C \times K</em> matrix, <code><var>V</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>
(if <var>m</var> is a scalar, all centers have that number of servers). If
<code><var>m</var>(k) < 1</code>, center <em>k</em> is a delay center (IS);
if <code><var>m</var>(k) = 1</code>, center <em>k</em> is a M/M/1-FCFS server.
This function does not support multiple-server nodes. Default
is 1.
</p>
</dd>
<dt><code><var>Z</var>(c)</code></dt>
<dd><p>class <em>c</em> external delay
(vector of length <em>C</em>, <code><var>Z</var>(c) ≥ 0</code>). Default is 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var>(c)</code></dt>
<dt><code><var>Xu</var>(c)</code></dt>
<dd><p>Lower and upper bounds for class <em>c</em> throughput.
</p>
</dd>
<dt><code><var>Rl</var>(c)</code></dt>
<dt><code><var>Ru</var>(c)</code></dt>
<dd><p>Lower and upper bounds for class <em>c</em> response time.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth
C. Sevcik, <cite>Quantitative System Performance: Computer System
Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 5.2 ("Asymptotic Bounds").
</li></ul>
<br>
<p><strong>See also:</strong> qncsaba.
</p>
</dd></dl>
<span id="doc_002dqnosbsb"></span>
<dl>
<dt id="index-qnosbsb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnosbsb</strong> <em>(<var>lambda</var>, <var>D</var>)</em></dt>
<dt id="index-qnosbsb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qnosbsb</strong> <em>(<var>lambda</var>, <var>S</var>, <var>V</var>)</em></dt>
<dd>
<span id="index-bounds_002c-balanced-system"></span>
<span id="index-open-network-3"></span>
<p>Compute Balanced System Bounds for single-class, open networks with
<em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>lambda</var></code></dt>
<dd><p>overall arrival rate to the system (scalar, <code><var>lambda</var> ≥ 0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand at center <em>k</em> (<code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>service time at center <em>k</em> (<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>mean number of visits at center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. This function only supports
<em>M/M/1</em> queues, therefore <var>m</var> must be
<code>ones(size(S))</code>.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bounds on the system throughput. <var>Xl</var> is always
set to <em>0</em>, since there can be no lower bound on open
networks throughput.
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bounds on the system response time.
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> qnosaba.
</p>
</dd></dl>
<span id="doc_002dqncsbsb"></span>
<dl>
<dt id="index-qncsbsb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsbsb</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncsbsb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsbsb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsbsb-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsbsb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncsbsb-3">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncsbsb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-bounds_002c-balanced-system-1"></span>
<span id="index-closed-network_002c-single-class-8"></span>
<span id="index-balanced-system-bounds"></span>
<p>Compute Balanced System Bounds on system throughput and response time for closed, single-class networks with <em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>number of requests in the system (scalar, <code><var>N</var> ≥ 0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand at center <em>k</em> (<code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em> (<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>average number of visits to center <em>k</em> (<code><var>V</var>(k)
≥ 0</code>). Default is 1.
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. This function supports
<code><var>m</var>(k) = 1</code> only (single-eserver FCFS nodes); this
parameter is only for compatibility with <code>qncsaba</code>. Default is
1.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>External delay (<code><var>Z</var> ≥ 0</code>). Default is 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bound on the system throughput.
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bound on the system response time.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth
C. Sevcik, <cite>Quantitative System Performance: Computer System
Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In
particular, see section 5.4 ("Balanced Systems Bounds").
</li></ul>
<br>
<p><strong>See also:</strong> qncmbsb.
</p>
</dd></dl>
<span id="doc_002dqncmbsb"></span>
<dl>
<dt id="index-qncmbsb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmbsb</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncmbsb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmbsb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dd>
<span id="index-bounds_002c-balanced-system-2"></span>
<span id="index-balanced-system-bounds-1"></span>
<span id="index-multiclass-network_002c-closed-3"></span>
<span id="index-closed-multiclass-network-1"></span>
<p>Compute Balanced System Bounds for closed, multiclass networks
with <em>K</em> service centers and <em>C</em> customer classes.
Only single-server nodes are supported.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests in the system (vector of length
<em>C</em>).
</p>
</dd>
<dt><code><var>D</var>(c, k)</code></dt>
<dd><p>class <em>c</em> service demand at center <em>k</em> (<em>C \times K</em>
matrix, <code><var>D</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c, k)</code></dt>
<dd><p>mean service time of class <em>c</em>
requests at center <em>k</em> (<em>C \times K</em> matrix, <code><var>S</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em>
requests to center <em>k</em> (<em>C \times K</em> matrix, <code><var>V</var>(c,k) ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var>(c)</code></dt>
<dt><code><var>Xu</var>(c)</code></dt>
<dd><p>Lower and upper class <em>c</em> throughput bounds (vector of length <em>C</em>).
</p>
</dd>
<dt><code><var>Rl</var>(c)</code></dt>
<dt><code><var>Ru</var>(c)</code></dt>
<dd><p>Lower and upper class <em>c</em> response time bounds (vector of length <em>C</em>).
</p>
</dd>
</dl>
<br>
<p><strong>See also:</strong> qncsbsb.
</p>
</dd></dl>
<span id="doc_002dqncmcb"></span>
<dl>
<dt id="index-qncmcb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmcb</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncmcb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncmcb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dd>
<span id="index-multiclass-network_002c-closed-4"></span>
<span id="index-closed-multiclass-network-2"></span>
<span id="index-bounds_002c-composite"></span>
<span id="index-composite-bounds"></span>
<p>Compute Composite Bounds (CB) on system throughput and response time for closed multiclass networks.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var>(c)</code></dt>
<dd><p>number of class <em>c</em> requests in the system.
</p>
</dd>
<dt><code><var>D</var>(c, k)</code></dt>
<dd><p>class <em>c</em> service demand
at center <em>k</em> (<code><var>S</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(c, k)</code></dt>
<dd><p>mean service time of class <em>c</em>
requests at center <em>k</em> (<code><var>S</var>(c,k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(c,k)</code></dt>
<dd><p>average number of visits of class <em>c</em>
requests to center <em>k</em> (<code><var>V</var>(c,k) ≥ 0</code>).
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var>(c)</code></dt>
<dt><code><var>Xu</var>(c)</code></dt>
<dd><p>Lower and upper bounds on class <em>c</em> throughput.
</p>
</dd>
<dt><code><var>Rl</var>(c)</code></dt>
<dt><code><var>Ru</var>(c)</code></dt>
<dd><p>Lower and upper bounds on class <em>c</em> response time.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> Teemu Kerola, <cite>The Composite Bound Method (CBM) for Computing
Throughput Bounds in Multiple Class Environments</cite>, Performance
Evaluation Vol. 6, Issue 1, March 1986, DOI
<a href="http://dx.doi.org/10.1016/0166-5316(86)90002-7">10.1016/0166-5316(86)90002-7</a>. Also available as
<a href="http://docs.lib.purdue.edu/cstech/395/">Technical Report
CSD-TR-475</a>, Department of Computer Sciences, Purdue University, mar
13, 1984 (Revised Aug 27, 1984).
</li></ul>
</dd></dl>
<span id="doc_002dqncspb"></span>
<dl>
<dt id="index-qncspb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncspb</strong> <em>(<var>N</var>, <var>D</var> )</em></dt>
<dt id="index-qncspb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncspb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var> )</em></dt>
<dt id="index-qncspb-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncspb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var> )</em></dt>
<dt id="index-qncspb-3">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>] =</em> <strong>qncspb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var> )</em></dt>
<dd>
<span id="index-bounds_002c-PB"></span>
<span id="index-PB-bounds"></span>
<span id="index-closed-network_002c-single-class-9"></span>
<p>Compute PB Bounds (C. H. Hsieh and S. Lam, 1987) for single-class,
closed networks with <em>K</em> service centers.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var></var></code></dt>
<dd><p>number of requests in the system (scalar, <code><var>N</var> > 0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand of service center <em>k</em> (<code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em> (<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>visit ratio to center <em>k</em> (<code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. This function only supports
<em>M/M/1</em> queues, therefore <var>m</var> must be
<code>ones(size(S))</code>.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>external delay (think time, <code><var>Z</var> ≥ 0</code>). Default 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bounds on the system throughput.
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bounds on the system response time.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> C. H. Hsieh and S. Lam, <cite>Two classes of performance bounds for
closed queueing networks</cite>, Performance Evaluation, Vol. 7 Issue 1,
pp. 3–30, February 1987, DOI
<a href="http://dx.doi.org/10.1016/0166-5316(87)90054-X">10.1016/0166-5316(87)90054-X</a>. Also available as
<a href="ftp://ftp.cs.utexas.edu/pub/techreports/tr85-09.pdf">Technical
Report TR-85-09</a>, Department of Computer Science, University of Texas
at Austin, June 1985
</li></ul>
<p>This function implements the non-iterative variant described in G.
Casale, R. R. Muntz, G. Serazzi, <cite>Geometric Bounds: a
Non-Iterative Analysis Technique for Closed Queueing Networks</cite>, IEEE
Transactions on Computers, 57(6):780-794, June 2008.
</p>
<br>
<p><strong>See also:</strong> qncsaba, qbcsbsb, qncsgb.
</p>
</dd></dl>
<span id="doc_002dqncsgb"></span>
<dl>
<dt id="index-qncsgb">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>, <var>Ql</var>, <var>Qu</var>] =</em> <strong>qncsgb</strong> <em>(<var>N</var>, <var>D</var>)</em></dt>
<dt id="index-qncsgb-1">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>, <var>Ql</var>, <var>Qu</var>] =</em> <strong>qncsgb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>)</em></dt>
<dt id="index-qncsgb-2">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>, <var>Ql</var>, <var>Qu</var>] =</em> <strong>qncsgb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>)</em></dt>
<dt id="index-qncsgb-3">Function File: <em>[<var>Xl</var>, <var>Xu</var>, <var>Rl</var>, <var>Ru</var>, <var>Ql</var>, <var>Qu</var>] =</em> <strong>qncsgb</strong> <em>(<var>N</var>, <var>S</var>, <var>V</var>, <var>m</var>, <var>Z</var>)</em></dt>
<dd>
<span id="index-bounds_002c-geometric"></span>
<span id="index-geometric-bounds"></span>
<span id="index-closed-network-2"></span>
<p>Compute Geometric Bounds (GB) on system throughput, system response
time and server queue lenghts for closed, single-class networks
with <em>K</em> service centers and <em>N</em> requests.
</p>
<p><strong>INPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>N</var></code></dt>
<dd><p>number of requests in the system (scalar, <code><var>N</var> > 0</code>).
</p>
</dd>
<dt><code><var>D</var>(k)</code></dt>
<dd><p>service demand of service center <em>k</em> (vector of length
<em>K</em>, <code><var>D</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>S</var>(k)</code></dt>
<dd><p>mean service time at center <em>k</em> (vector of length <em>K</em>,
<code><var>S</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>V</var>(k)</code></dt>
<dd><p>visit ratio to center <em>k</em>
(vector of length <em>K</em>, <code><var>V</var>(k) ≥ 0</code>).
</p>
</dd>
<dt><code><var>m</var>(k)</code></dt>
<dd><p>number of servers at center <em>k</em>. This function only supports
<em>M/M/1</em> queues, therefore <var>m</var> must be
<code>ones(size(S))</code>.
</p>
</dd>
<dt><code><var>Z</var></code></dt>
<dd><p>external delay (think time, <code><var>Z</var> ≥ 0</code>, scalar). Default is 0.
</p>
</dd>
</dl>
<p><strong>OUTPUTS</strong>
</p>
<dl compact="compact">
<dt><code><var>Xl</var></code></dt>
<dt><code><var>Xu</var></code></dt>
<dd><p>Lower and upper bound on the system throughput. If <code><var>Z</var>>0</code>,
these bounds are computed using <em>Geometric Square-root Bounds</em>
(GSB). If <code><var>Z</var>==0</code>, these bounds are computed using <em>Geometric Bounds</em> (GB)
</p>
</dd>
<dt><code><var>Rl</var></code></dt>
<dt><code><var>Ru</var></code></dt>
<dd><p>Lower and upper bound on the system response time. These bounds
are derived from <var>Xl</var> and <var>Xu</var> using Little’s Law:
<code><var>Rl</var> = <var>N</var> / <var>Xu</var> - <var>Z</var></code>,
<code><var>Ru</var> = <var>N</var> / <var>Xl</var> - <var>Z</var></code>
</p>
</dd>
<dt><code><var>Ql</var>(k)</code></dt>
<dt><code><var>Qu</var>(k)</code></dt>
<dd><p>lower and upper bounds of center <em>K</em> queue length.
</p>
</dd>
</dl>
<p><strong>REFERENCES</strong>
</p>
<ul>
<li> G. Casale, R. R. Muntz, G. Serazzi, <cite>Geometric Bounds: a
Non-Iterative Analysis Technique for Closed Queueing Networks</cite>, IEEE
Transactions on Computers, 57(6):780-794, June
2008. <a href="http://doi.ieeecomputersociety.org/10.1109/TC.2008.37">10.1109/TC.2008.37</a>
</li></ul>
<p>In this implementation we set <em>X^+</em> and <em>X^-</em> as the upper
and lower Asymptotic Bounds as computed by the <code>qncsab</code>
function, respectively.
</p>
</dd></dl>
<hr>
<span id="QN-Analysis-Examples"></span><div class="header">
<p>
Previous: <a href="#Bounds-Analysis" accesskey="p" rel="prev">Bounds Analysis</a>, Up: <a href="#Queueing-Networks" accesskey="u" rel="up">Queueing Networks</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="QN-Analysis-Examples-1"></span><h3 class="section">5.6 QN Analysis Examples</h3>
<p>In this section we illustrate with a few examples how the
<code>queueing</code> package can be used to analyze queueing network
models. Further examples can be found in the functions demo blocks,
and can be inspected with the <code>demo <em>function</em></code> Octave
command.
</p>
<span id="Closed_002c-Single-Class-Network"></span><h4 class="subsection">5.6.1 Closed, Single Class Network</h4>
<p>Let us consider again the network shown in
<a href="#fig_003aqn_005fclosed_005fsingle">Figure 5.1</a>. We denote with <em>S_k</em> the average
service time at center <em>k</em>, <em>k=1, 2, 3</em>. Let the service
times be <em>S_1 = 1.0</em>, <em>S_2 = 2.0</em> and <em>S_3 = 0.8</em>. The
routing of jobs within the network is described with a <em>routing
probability matrix</em> <em>\bf P</em>: a request completing service at
center <em>i</em> is enqueued at center <em>j</em> with probability
<em>P_{i, j}</em>. We use the following routing matrix:
</p>
<div class="example">
<pre class="example"> / 0 0.3 0.7 \
P = | 1 0 0 |
\ 1 0 0 /
</pre></div>
<p>The network above can be analyzed with the <code>qnclosed</code> function
see <a href="#doc_002dqnclosed">doc-qnclosed</a>. <code>qnclosed</code> requires the following
parameters:
</p>
<dl compact="compact">
<dt><var>N</var></dt>
<dd><p>Number of requests in the network (since we are considering a closed
network, the number of requests is fixed)
</p>
</dd>
<dt><var>S</var></dt>
<dd><p>Array of average service times at the centers: <code><var>S</var>(k)</code> is
the average service time at center <em>k</em>.
</p>
</dd>
<dt><var>V</var></dt>
<dd><p>Array of visit ratios: <code><var>V</var>(k)</code> is the average number of
visits to center <em>k</em>.
</p>
</dd>
</dl>
<p>We can compute <em>V_k</em> from the routing probability matrix
<em>P_{i, j}</em> using the <code>qncsvisits</code> function
see <a href="#doc_002dqncsvisits">doc-qncsvisits</a>. Therefore, we can analyze the network for a
given population size <em>N</em> (e.g., <em>N=10</em>) as follows:
</p>
<div class="example">
<pre class="example"><kbd>N = 10;</kbd>
<kbd>S = [1 2 0.8];</kbd>
<kbd>P = [0 0.3 0.7; 1 0 0; 1 0 0];</kbd>
<kbd>V = qncsvisits(P);</kbd>
<kbd>[U R Q X] = qnclosed( N, S, V )</kbd>
⇒ U = 0.99139 0.59483 0.55518
⇒ R = 7.4360 4.7531 1.7500
⇒ Q = 7.3719 1.4136 1.2144
⇒ X = 0.99139 0.29742 0.69397
</pre></div>
<p>The output of <code>qnclosed</code> includes the vectors of utilizations
<em>U_k</em> at center <em>k</em>, response time <em>R_k</em>, average
number of customers <em>Q_k</em> and throughput <em>X_k</em>. In our
example, the throughput of center 1 is <em>X_1 = 0.99139</em>, and the
average number of requests in center 3 is <em>Q_3 = 1.2144</em>. The
utilization of center 1 is <em>U_1 = 0.99139</em>, which is the highest
among the service centers. Thus, center 1 is the <em>bottleneck
device</em>.
</p>
<p>This network can also be analyzed with the <code>qnsolve</code> function
see <a href="#doc_002dqnsolve">doc-qnsolve</a>. <code>qnsolve</code> can handle open, closed or
mixed networks, and allows the network to be described in a very
flexible way. First, let <var>Q1</var>, <var>Q2</var> and <var>Q3</var> be the
variables describing the service centers. Each variable is
instantiated with the <code>qnmknode</code> function.
</p>
<div class="example">
<pre class="example"><kbd>Q1 = qnmknode( "m/m/m-fcfs", 1 );</kbd>
<kbd>Q2 = qnmknode( "m/m/m-fcfs", 2 );</kbd>
<kbd>Q3 = qnmknode( "m/m/m-fcfs", 0.8 );</kbd>
</pre></div>
<p>The first parameter of <code>qnmknode</code> is a string describing the
type of the node; <code>"m/m/m-fcfs"</code> denotes a <em>M/M/m</em>–FCFS
center (this parameter is case-insensitive). The second parameter
gives the average service time. An optional third parameter can be
used to specify the number <em>m</em> of service centers. If omitted, it
is assumed <em>m=1</em> (single-server node).
</p>
<p>Now, the network can be analyzed as follows:
</p>
<div class="example">
<pre class="example"><kbd>N = 10;</kbd>
<kbd>V = [1 0.3 0.7];</kbd>
<kbd>[U R Q X] = qnsolve( "closed", N, { Q1, Q2, Q3 }, V )</kbd>
⇒ U = 0.99139 0.59483 0.55518
⇒ R = 7.4360 4.7531 1.7500
⇒ Q = 7.3719 1.4136 1.2144
⇒ X = 0.99139 0.29742 0.69397
</pre></div>
<span id="Open_002c-Single-Class-Network"></span><h4 class="subsection">5.6.2 Open, Single Class Network</h4>
<p>Let us consider an open network with <em>K=3</em> service centers and
the following routing probabilities:
</p>
<div class="example">
<pre class="example"> / 0 0.3 0.5 \
P = ! 1 0 0 |
\ 1 0 0 /
</pre></div>
<p>In this network, requests can leave the system from center 1 with
probability <em>1-(0.3+0.5) = 0.2</em>. We suppose that external jobs
arrive at center 1 with rate <em>\lambda_1 = 0.15</em>; there are no
arrivals at centers 2 and 3.
</p>
<p>Similarly to closed networks, we first compute the visit counts
<em>V_k</em> to center <em>k</em>, <em>k = 1, 2, 3</em>. We use the
<code>qnosvisits</code> function as follows:
</p>
<div class="example">
<pre class="example"><kbd>P = [0 0.3 0.5; 1 0 0; 1 0 0];</kbd>
<kbd>lambda = [0.15 0 0];</kbd>
<kbd>V = qnosvisits(P, lambda)</kbd>
⇒ V = 5.00000 1.50000 2.50000
</pre></div>
<p>where <code><var>lambda</var>(k)</code> is the arrival rate at center <em>k</em>,
and <em>\bf P</em> is the routing matrix. Assuming the same service times as
in the previous example, the network can be analyzed with the
<code>qnopen</code> function see <a href="#doc_002dqnopen">doc-qnopen</a>, as follows:
</p>
<div class="example">
<pre class="example"><kbd>S = [1 2 0.8];</kbd>
<kbd>[U R Q X] = qnopen( sum(lambda), S, V )</kbd>
⇒ U = 0.75000 0.45000 0.30000
⇒ R = 4.0000 3.6364 1.1429
⇒ Q = 3.00000 0.81818 0.42857
⇒ X = 0.75000 0.22500 0.37500
</pre></div>
<p>The first parameter of the <code>qnopen</code> function is the (scalar)
aggregate arrival rate.
</p>
<p>Again, it is possible to use the <code>qnsolve</code> high-level function:
</p>
<div class="example">
<pre class="example"><kbd>Q1 = qnmknode( "m/m/m-fcfs", 1 );</kbd>
<kbd>Q2 = qnmknode( "m/m/m-fcfs", 2 );</kbd>
<kbd>Q3 = qnmknode( "m/m/m-fcfs", 0.8 );</kbd>
<kbd>lambda = [0.15 0 0];</kbd>
<kbd>[U R Q X] = qnsolve( "open", sum(lambda), { Q1, Q2, Q3 }, V )</kbd>
⇒ U = 0.75000 0.45000 0.30000
⇒ R = 4.0000 3.6364 1.1429
⇒ Q = 3.00000 0.81818 0.42857
⇒ X = 0.75000 0.22500 0.37500
</pre></div>
<span id="Closed-Multiclass-Network_002f1"></span><h4 class="subsection">5.6.3 Closed Multiclass Network/1</h4>
<p>The following example is taken from Herb Schwetman, <cite>Implementing
the Mean Value Algorithm for the Solution of Queueing Network Models</cite>,
Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
University, Feb 15, 1982.
</p>
<p>Let us consider the following multiclass QN with three servers and two classes
</p>
<div class="float"><span id="fig_003aapl"></span>
<div align="center"><img src="qn_closed_multi_apl.png" alt="qn_closed_multi_apl">
</div><div class="float-caption"><p><strong>Figure 5.3
</strong></p></div></div>
<p>Servers 1 and 2 (labeled <em>APL</em> and <em>IMS</em>, respectively) are
infinite server nodes; server 3 (labeled <em>SYS</em>) is Processor
Sharing (PS). Mean service times are given in the following table:
</p>
<table>
<thead><tr><th width="15%"></th><th width="15%">APL</th><th width="15%">IMS</th><th width="15%">SYS</th></tr></thead>
<tr><td width="15%">Class 1</td><td width="15%">1</td><td width="15%">-</td><td width="15%">0.025</td></tr>
<tr><td width="15%">Class 2</td><td width="15%">-</td><td width="15%">15</td><td width="15%">0.500</td></tr>
</table>
<p>There is no class switching. If we assume a population of 15 requests
for class 1, and 5 requests for class 2, then the model can be
analyzed as follows:
</p>
<div class="example">
<pre class="verbatim"> S = [1 0 .025; 0 15 .5];
P = zeros(2,3,2,3);
P(1,1,1,3) = P(1,3,1,1) = 1;
P(2,2,2,3) = P(2,3,2,2) = 1;
V = qncmvisits(P,[3 3]); # reference station is station 3
N = [15 5];
m = [-1 -1 1];
[U R Q X] = qncmmva(N,S,V,m)
</pre><pre class="example"> ⇒
U =
14.32312 0.00000 0.35808
0.00000 4.70699 0.15690
R =
1.00000 0.00000 0.04726
0.00000 15.00000 0.93374
Q =
14.32312 0.00000 0.67688
0.00000 4.70699 0.29301
X =
14.32312 0.00000 14.32312
0.00000 0.31380 0.31380
</pre></div>
<span id="Closed-Multiclass-Network_002f2"></span><h4 class="subsection">5.6.4 Closed Multiclass Network/2</h4>
<p>The following example is from M. Marzolla, <cite>The qnetworks
Toolbox: A Software Package for Queueing Networks Analysis</cite>, Technical
Report
<a href="https://www.moreno.marzolla.name/publications/papers/UBLCS-2010-04.pdf">UBLCS-2010-04</a>, Department of Computer Science, University of Bologna,
Italy, February 2010.
</p>
<div class="float"><span id="fig_003aweb_005fmodel"></span>
<div align="center"><img src="qn_web_model.png" alt="qn_web_model">
</div>
<div class="float-caption"><p><strong>Figure 5.4: </strong>Three-tier enterprise system model</p></div></div>
<p>The model shown in <a href="#fig_003aweb_005fmodel">Figure 5.4</a> shows a three-tier enterprise
system with <em>K=6</em> service centers. The first tier contains the
<em>Web server</em> (node 1), which is responsible for generating Web
pages and transmitting them to clients. The application logic is
implemented by nodes 2 and 3, and the storage tier is made of nodes
4–6.The system is subject to two workload classes, both represented
as closed populations of <em>N_1</em> and <em>N_2</em> requests,
respectively. Let <em>D_{c, k}</em> denote the service demand of class
<em>c</em> requests at center <em>k</em>. We use the parameter values:
</p>
<table>
<thead><tr><th width="20%">Serv. no.</th><th width="33%">Name</th><th width="10%">Class 1</th><th width="10%">Class 2</th></tr></thead>
<tr><td width="20%">1</td><td width="33%">Web Server</td><td width="10%">12</td><td width="10%">2</td></tr>
<tr><td width="20%">2</td><td width="33%">App. Server 1</td><td width="10%">14</td><td width="10%">20</td></tr>
<tr><td width="20%">3</td><td width="33%">App. Server 2</td><td width="10%">23</td><td width="10%">14</td></tr>
<tr><td width="20%">4</td><td width="33%">DB Server 1</td><td width="10%">20</td><td width="10%">90</td></tr>
<tr><td width="20%">5</td><td width="33%">DB Server 2</td><td width="10%">80</td><td width="10%">30</td></tr>
<tr><td width="20%">6</td><td width="33%">DB Server 3</td><td width="10%">31</td><td width="10%">33</td></tr>
</table>
<p>We set the total number of requests to 100, that is <em>N_1 + N_2 =
N = 100</em>, and we study how different population mixes <em>(N_1,
N_2)</em> affect the system throughput and response time. Let
<em>0 < \beta_1 < 1</em> denote the fraction of class 1 requests:
<em>N_1 = \beta_1 N</em>, <em>N_2 = (1-\beta_1)N</em>. The following
Octave code defines the model for <em>\beta_1 = 0.1</em>:
</p>
<div class="example">
<pre class="example">N = 100; # total population size
beta1 = 0.1; # fraction of class 1 reqs.
S = [12 14 23 20 80 31; ...
2 20 14 90 30 33 ];
V = ones(size(S));
pop = [fix(beta1*N) N-fix(beta1*N)];
[U R Q X] = qncmmva(pop, S, V);
</pre></div>
<p>The <code>qncmmva(pop, S, V)</code> function invocation uses the
multiclass MVA algorithm to compute per-class utilizations <em>U_{c,
k}</em>, response times <em>R_{c,k}</em>, mean queue lengths <em>Q_{c,k}</em>
and throughputs <em>X_{c,k}</em> at each service center <em>k</em>, given
a population vector <var>pop</var>, mean service times <var>S</var> and visit
ratios <var>V</var>. Since we are given the service demands <em>D_{c, k}
= S_{c, k} V_{c,k}</em>, but function <code>qncmmva</code> requires separate
service times and visit ratios, we set the service times equal to the
demands, and all visit ratios equal to one. Overall class and system
throughputs and response times can also be computed:
</p>
<div class="example">
<pre class="example">X1 = X(1,1) / V(1,1) # class 1 throughput
⇒ X1 = 0.0044219
X2 = X(2,1) / V(2,1) # class 2 throughput
⇒ X2 = 0.010128
XX = X1 + X2 # system throughput
⇒ XX = 0.014550
R1 = dot(R(1,:), V(1,:)) # class 1 resp. time
⇒ R1 = 2261.5
R2 = dot(R(2,:), V(2,:)) # class 2 resp. time
⇒ R2 = 8885.9
RR = N / XX # system resp. time
⇒ RR = 6872.7
</pre></div>
<p><code>dot(X,Y)</code> computes the dot product of two vectors.
<code>R(1,:)</code> is the first row of matrix <var>R</var> and <code>V(1,:)</code> is
the first row of matrix <var>V</var>, so <code>dot(R(1,:), V(1,:))</code>
computes <em>\sum_k R_{1,k} V_{1,k}</em>.
</p>
<div class="float"><span id="fig_003aweb"></span>
<div align="center"><img src="web.png" alt="web">
</div>
<div class="float-caption"><p><strong>Figure 5.5: </strong>Throughput and Response Times as a function of the population mix</p></div></div>
<p>We can also compute the system power <em>\Phi = X / R</em>, which
defines how efficiently resources are being used: high values of
<em>\Phi</em> denote the desirable situation of high throughput and low
response time. <a href="#fig_003apower">Figure 5.6</a> shows <em>\Phi</em> as a function of
<em>\beta_1</em>. We observe a “plateau” of the global system power,
corresponding to values of <em>\beta_1</em> which approximately lie
between <em>0.3</em> and <em>0.7</em>. The per-class power exhibits an
interesting (although not completely surprising) pattern, where the
class with higher population exhibits worst efficiency as it produces
higher contention on the resources.
</p>
<div class="float"><span id="fig_003apower"></span>
<div align="center"><img src="power.png" alt="power">
</div>
<div class="float-caption"><p><strong>Figure 5.6: </strong>System Power as a function of the population mix</p></div></div>
<span id="Closed-Multiclass-Network_002f3"></span><h4 class="subsection">5.6.5 Closed Multiclass Network/3</h4>
<p>We now consider an example of multiclass network with class switching.
The example is taken from <a href="#Sch82">Sch82</a>, and is shown in Figure
<a href="#fig_003aclass_005fswitching">Figure 5.7</a>.
</p>
<div class="float"><span id="fig_003aclass_005fswitching"></span>
<div align="center"><img src="qn_closed_multi_cs.png" alt="qn_closed_multi_cs">
</div>
<div class="float-caption"><p><strong>Figure 5.7: </strong>Multiclass Model with Class Switching</p></div></div>
<p>The system consists of three devices and two job classes. The CPU node
is a PS server, while the two nodes labeled I/O are FCFS. Class 1 mean
service time at the CPU is <em>0.01</em>; class 2 mean service time at
the CPU is <em>0.05</em>. The mean service time at node 2 is <em>0.1</em>,
and is class-independent. Similarly, the mean service time at node 3
is <em>0.07</em>. Jobs in class 1 leave the CPU and join class 2 with
probability <em>0.1</em>; jobs of class 2 leave the CPU and join class 1
with probability <em>0.2</em>. There are <em>N=3</em> jobs, which are
initially allocated to class 1. However, note that since class
switching is allowed, the total number of jobs in each class does not
remain constant; however the total number of jobs does.
</p>
<div class="example">
<pre class="verbatim"> C = 2; K = 3;
S = [.01 .07 .10; ...
.05 .07 .10 ];
P = zeros(C,K,C,K);
P(1,1,1,2) = .7; P(1,1,1,3) = .2; P(1,1,2,1) = .1;
P(2,1,2,2) = .3; P(2,1,2,3) = .5; P(2,1,1,1) = .2;
P(1,2,1,1) = P(2,2,2,1) = 1;
P(1,3,1,1) = P(2,3,2,1) = 1;
N = [3 0];
[U R Q X] = qncmmva(N, S, P)
</pre><pre class="example"> ⇒
U =
0.12609 0.61784 0.25218
0.31522 0.13239 0.31522
R =
0.014653 0.133148 0.163256
0.073266 0.133148 0.163256
Q =
0.18476 1.17519 0.41170
0.46190 0.25183 0.51462
X =
12.6089 8.8262 2.5218
6.3044 1.8913 3.1522
</pre></div>
<hr>
<span id="References"></span><div class="header">
<p>
Next: <a href="#Copying" accesskey="n" rel="next">Copying</a>, Previous: <a href="#Queueing-Networks" accesskey="p" rel="prev">Queueing Networks</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="References-1"></span><h2 class="chapter">6 References</h2>
<dl compact="compact">
<dt>[Aky88]</dt>
<dd><p>Ian F. Akyildiz, <cite>Mean Value Analysis for Blocking Queueing
Networks</cite>, IEEE Transactions on Software Engineering, vol. 14, n. 2,
april 1988, pp. 418–428. DOI <a href="http://dx.doi.org/10.1109/32.4663">10.1109/32.4663</a>
</p>
</dd>
<dt>[Bar79]</dt>
<dd><p>Y. Bard, <cite>Some Extensions to Multiclass Queueing Network Analysis</cite>,
proc. 4th Int. Symp. on Modelling and Performance Evaluation of
Computer Systems, feb. 1979, pp. 51–62.
</p>
</dd>
<dt>[BCMP75]</dt>
<dd><p>F. Baskett, K. Mani Chandy, R. R. Muntz, and F. G. Palacios. 1975. <cite>Open, Closed, and Mixed Networks of Queues with Different Classes of Customers</cite>. J. ACM 22, 2 (April 1975), 248—260, DOI <a href="http://doi.acm.org/10.1145/321879.321887">10.1145/321879.321887</a>
</p>
</dd>
<dt>[BGMT98]</dt>
<dd><p>G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications</cite>, Wiley,
1998.
</p>
</dd>
<dt>[Buz73]</dt>
<dd><p>J. P. Buzen, <cite>Computational Algorithms for Closed Queueing
Networks with Exponential Servers</cite>, Communications of the ACM, volume
16, number 9, september 1973,
pp. 527–531. DOI <a href="http://doi.acm.org/10.1145/362342.362345">10.1145/362342.362345</a>
</p>
</dd>
<dt>[C08]</dt>
<dd><p>G. Casale, <cite>A note on stable flow-equivalent aggregation in
closed networks</cite>. Queueing Syst. Theory Appl., 60:193–-202, December
2008, DOI <a href="http://dx.doi.org/10.1007/s11134-008-9093-6">10.1007/s11134-008-9093-6</a>
</p>
</dd>
<dt>[CMS08]</dt>
<dd><p>G. Casale, R. R. Muntz, G. Serazzi,
<cite>Geometric Bounds: a Non-Iterative Analysis Technique for Closed
Queueing Networks</cite>, IEEE Transactions on Computers, 57(6):780-794,
June 2008. DOI <a href="http://doi.ieeecomputersociety.org/10.1109/TC.2008.37">10.1109/TC.2008.37</a>
</p>
</dd>
<dt><span id="GrSn97"></span>[GrSn97]</dt>
<dd><p>C. M. Grinstead, J. L. Snell, (July 1997). <cite>Introduction
to Probability</cite>. American Mathematical Society. ISBN 978-0821807491;
this excellent textbook is <a href="http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf">available in PDF format</a>
and can be used under the terms of the <a href="http://www.gnu.org/copyleft/fdl.html">GNU Free Documentation License (FDL)</a>
</p>
</dd>
<dt>[Jac04]</dt>
<dd><p>J. R. Jackson, <cite>Jobshop-Like Queueing Systems</cite>, Vol. 50, No. 12, Ten Most Influential Titles of "Management Science’s" First Fifty Years (Dec., 2004), pp. 1796-1802, <a href="http://www.jstor.org/stable/30046149">available online</a>
</p>
</dd>
<dt>[Jai91]</dt>
<dd><p>R. Jain, <cite>The Art of Computer Systems Performance Analysis</cite>,
Wiley, 1991, p. 577.
</p>
</dd>
<dt>[HsLa87]</dt>
<dd><p>C. H. Hsieh and S. Lam,
<cite>Two classes of performance bounds for closed queueing networks</cite>,
PEVA, vol. 7, n. 1, pp. 3–30, 1987
</p>
</dd>
<dt>[Ker84]</dt>
<dd><p>T. Kerola, <cite>The Composite Bound Method (CBM) for Computing
Throughput Bounds in Multiple Class Environments</cite>,
Performance Evaluation, Vol. 6 Isue 1, March 1986, DOI
<a href="http://dx.doi.org/10.1016/0166-5316(86)90002-7">10.1016/0166-5316(86)90002-7</a>; also available as
<a href="http://docs.lib.purdue.edu/cstech/395/">Technical Report CSD-TR-475</a>, Department of Computer Sciences, Purdue
University, mar 13, 1984 (Revised aug 27, 1984).
</p>
</dd>
<dt>[LZGS84]</dt>
<dd><p>E. D. Lazowska, J. Zahorjan, G. Scott Graham, and K. C.
Sevcik, <cite>Quantitative System Performance: Computer System
Analysis Using Queueing Network Models</cite>, Prentice Hall,
1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">available online</a>.
</p>
</dd>
<dt>[ReKo76]</dt>
<dd><p>M. Reiser, H. Kobayashi, <cite>On The Convolution Algorithm for
Separable Queueing Networks</cite>, In Proceedings of the 1976 ACM
SIGMETRICS Conference on Computer Performance Modeling Measurement and
Evaluation (Cambridge, Massachusetts, United States, March 29–31,
1976). SIGMETRICS ’76. ACM, New York, NY,
pp. 109–117. DOI <a href="http://doi.acm.org/10.1145/800200.806187">10.1145/800200.806187</a>
</p>
</dd>
<dt>[ReLa80]</dt>
<dd><p>M. Reiser and S. S. Lavenberg, <cite>Mean-Value Analysis of Closed
Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April
1980, pp. 313–322. DOI
<a href="http://doi.acm.org/10.1145/322186.322195">10.1145/322186.322195</a>
</p>
</dd>
<dt>[Sch79]</dt>
<dd><p>P. Schweitzer, <cite>Approximate Analysis of Multiclass Closed Networks of
Queues</cite>, Proc. Int. Conf. on Stochastic Control and Optimization, jun
1979, pp. 25—29
</p>
</dd>
<dt>[Sch80]</dt>
<dd><p>H. D. Schwetman, <cite>Testing Network-of-Queues Software</cite>,
<a href="http://docs.lib.purdue.edu/cstech/259/">Technical Report CSD-TR
330</a>, Department of computer Sciences, Purdue University, 1980
</p>
</dd>
<dt>[Sch81]</dt>
<dd><p>H. D. Schwetman, <cite>Some Computational Aspects of Queueing Network
Models</cite>, <a href="http://docs.lib.purdue.edu/cstech/285/">Technical
Report CSD-TR-354</a>, Department of Computer Sciences, Purdue
University, feb, 1981 (revised).
</p>
</dd>
<dt><span id="Sch82"></span>[Sch82]</dt>
<dd><p>H. D. Schwetman, <cite>Implementing the Mean Value Algorithm for the
Solution of Queueing Network Models</cite>,
<a href="http://docs.lib.purdue.edu/cstech/286/">Technical Report
CSD-TR-355</a>, Department of Computer Sciences, Purdue University, feb
15, 1982.
</p>
</dd>
<dt>[Sch84]</dt>
<dd><p>T. Kerola, H. D. Schwetman, <cite>Performance Bounds for
Multiclass Models</cite>, <a href="http://docs.lib.purdue.edu/cstech/399/">Technical Report CSD-TR-479</a>, Department of Computer Sciences, Purdue
University, 1984.
</p>
</dd>
<dt>[Tij03]</dt>
<dd><p>H. C. Tijms, <cite>A first course in stochastic models</cite>,
John Wiley and Sons, 2003, ISBN 0471498807, ISBN 9780471498803,
DOI <a href="http://dx.doi.org/10.1002/047001363X">10.1002/047001363X</a>
</p>
</dd>
<dt>[ZaWo81]</dt>
<dd><p>J. Zahorjan and E. Wong, <cite>The solution of separable queueing
network models using mean value analysis</cite>. SIGMETRICS
Perform. Eval. Rev. 10, 3 (Sep. 1981), 80-85.
DOI <a href="http://doi.acm.org/10.1145/1010629.805477">10.1145/1010629.805477</a>
</p>
</dd>
<dt>[Zeng03]</dt>
<dd><p>G. Zeng, <cite>Two common properties of the erlang-B function, erlang-C function, and Engset blocking function</cite>, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296 DOI
<a href="http://dx.doi.org/10.1016/S0895-7177(03)90040-9">10.1016/S0895-7177(03)90040-9</a>
</p>
</dd>
</dl>
<hr>
<span id="Copying"></span><div class="header">
<p>
Next: <a href="#Concept-Index" accesskey="n" rel="next">Concept Index</a>, Previous: <a href="#References" accesskey="p" rel="prev">References</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="GNU-GENERAL-PUBLIC-LICENSE"></span><h2 class="appendix">Appendix A GNU GENERAL PUBLIC LICENSE</h2>
<span id="index-warranty"></span>
<span id="index-copyright"></span>
<div align="center">Version 3, 29 June 2007
</div>
<div class="display">
<pre class="display">Copyright © 2007 Free Software Foundation, Inc. <a href="http://fsf.org/">http://fsf.org/</a>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
</pre></div>
<span id="Preamble"></span><h3 class="heading">Preamble</h3>
<p>The GNU General Public License is a free, copyleft license for
software and other kinds of works.
</p>
<p>The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You
can apply it to your programs, too.
</p>
<p>When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
</p>
<p>To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
</p>
<p>For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
</p>
<p>Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
</p>
<p>For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
</p>
<p>Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
</p>
<p>Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
</p>
<p>The precise terms and conditions for copying, distribution and
modification follow.
</p>
<span id="TERMS-AND-CONDITIONS"></span><h3 class="heading">TERMS AND CONDITIONS</h3>
<ol start="0">
<li> Definitions.
<p>“This License” refers to version 3 of the GNU General Public License.
</p>
<p>“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
</p>
<p>“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.
</p>
<p>To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.
</p>
<p>A “covered work” means either the unmodified Program or a work based
on the Program.
</p>
<p>To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
</p>
<p>To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
</p>
<p>An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
</p>
</li><li> Source Code.
<p>The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.
</p>
<p>A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
</p>
<p>The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
</p>
<p>The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
</p>
<p>The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
</p>
<p>The Corresponding Source for a work in source code form is that same
work.
</p>
</li><li> Basic Permissions.
<p>All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
</p>
<p>You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
</p>
<p>Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
</p>
</li><li> Protecting Users’ Legal Rights From Anti-Circumvention Law.
<p>No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
</p>
<p>When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid
circumvention of technological measures.
</p>
</li><li> Conveying Verbatim Copies.
<p>You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
</p>
<p>You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
</p>
</li><li> Conveying Modified Source Versions.
<p>You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
</p>
<ol type="a" start="1">
<li> The work must carry prominent notices stating that you modified it,
and giving a relevant date.
</li><li> The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.
</li><li> You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.
</li><li> If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.
</li></ol>
<p>A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
</p>
</li><li> Conveying Non-Source Forms.
<p>You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
</p>
<ol type="a" start="1">
<li> Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.
</li><li> Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.
</li><li> Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.
</li><li> Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.
</li><li> Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.
</li></ol>
<p>A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
</p>
<p>A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
</p>
<p>“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
</p>
<p>If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
</p>
<p>The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
</p>
<p>Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
</p>
</li><li> Additional Terms.
<p>“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
</p>
<p>When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
</p>
<p>Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
</p>
<ol type="a" start="1">
<li> Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or
</li><li> Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or
</li><li> Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
</li><li> Limiting the use for publicity purposes of names of licensors or
authors of the material; or
</li><li> Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or
</li><li> Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.
</li></ol>
<p>All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
</p>
<p>If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
</p>
<p>Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
</p>
</li><li> Termination.
<p>You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
</p>
<p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
</p>
<p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
</p>
<p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
</p>
</li><li> Acceptance Not Required for Having Copies.
<p>You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
</p>
</li><li> Automatic Licensing of Downstream Recipients.
<p>Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
</p>
<p>An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
</p>
<p>You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
</p>
</li><li> Patents.
<p>A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.
</p>
<p>A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
</p>
<p>Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
</p>
<p>In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
</p>
<p>If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
</p>
<p>If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
</p>
<p>A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
</p>
<p>Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
</p>
</li><li> No Surrender of Others’ Freedom.
<p>If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
</p>
</li><li> Use with the GNU Affero General Public License.
<p>Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
</p>
</li><li> Revised Versions of this License.
<p>The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
</p>
<p>Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.
</p>
<p>If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
</p>
<p>Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
</p>
</li><li> Disclaimer of Warranty.
<p>THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
</p>
</li><li> Limitation of Liability.
<p>IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
</p>
</li><li> Interpretation of Sections 15 and 16.
<p>If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
</p>
</li></ol>
<span id="END-OF-TERMS-AND-CONDITIONS"></span><h3 class="heading">END OF TERMS AND CONDITIONS</h3>
<span id="How-to-Apply-These-Terms-to-Your-New-Programs"></span><h3 class="heading">How to Apply These Terms to Your New Programs</h3>
<p>If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
</p>
<p>To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.
</p>
<div class="example">
<pre class="example"><var>one line to give the program's name and a brief idea of what it does.</var>
Copyright (C) <var>year</var> <var>name of author</var>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</pre></div>
<p>Also add information on how to contact you by electronic and paper mail.
</p>
<p>If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
</p>
<div class="example">
<pre class="example"><var>program</var> Copyright (C) <var>year</var> <var>name of author</var>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘<samp>show w</samp>’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘<samp>show c</samp>’ for details.
</pre></div>
<p>The hypothetical commands ‘<samp>show w</samp>’ and ‘<samp>show c</samp>’ should show
the appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you would
use an “about box”.
</p>
<p>You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</p>
<p>The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <a href="http://www.gnu.org/philosophy/why-not-lgpl.html">http://www.gnu.org/philosophy/why-not-lgpl.html</a>.
</p>
<hr>
<span id="Concept-Index"></span><div class="header">
<p>
Next: <a href="#Function-Index" accesskey="n" rel="next">Function Index</a>, Previous: <a href="#Copying" accesskey="p" rel="prev">Copying</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Concept-Index-1"></span><h2 class="unnumbered">Concept Index</h2>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Concept-Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-W"><b>W</b></a>
</td></tr></table>
<table class="index-cp" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-A">A</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-absorption-probabilities_002c-DTMC">absorption probabilities, DTMC</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-approximate-MVA">approximate MVA</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asymmetric-M_002fM_002fm-system">asymmetric <em>M/M/m</em> system</a>:</td><td> </td><td valign="top"><a href="#The-Asymmetric-M_002fM_002fm-System">The Asymmetric M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asymptotic-bounds">asymptotic bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-asymptotic-bounds-1">asymptotic bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-average-number-of-customers">average number of customers</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-average-number-of-customers-1">average number of customers</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-average-number-of-visits">average number of visits</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-average-number-of-visits-1">average number of visits</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-B">B</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-balanced-system-bounds">balanced system bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-balanced-system-bounds-1">balanced system bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-BCMP-network">BCMP network</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-birth_002ddeath-process_002c-CTMC">birth-death process, CTMC</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028CTMC_0029">Birth-death process (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-birth_002ddeath-process_002c-DTMC">birth-death process, DTMC</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028DTMC_0029">Birth-death process (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-blocking-queueing-network">blocking queueing network</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-blocking-queueing-network-1">blocking queueing network</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-asymptotic">bounds, asymptotic</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-asymptotic-1">bounds, asymptotic</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-asymptotic-2">bounds, asymptotic</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-asymptotic-3">bounds, asymptotic</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-balanced-system">bounds, balanced system</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-balanced-system-1">bounds, balanced system</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-balanced-system-2">bounds, balanced system</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-composite">bounds, composite</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-geometric">bounds, geometric</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-bounds_002c-PB">bounds, PB</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-C">C</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-multiclass-network">closed multiclass network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-multiclass-network-1">closed multiclass network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-multiclass-network-2">closed multiclass network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network">closed network</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network-1">closed network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network-2">closed network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-approximate-analysis">closed network, approximate analysis</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-finite-capacity">closed network, finite capacity</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-finite-capacity-1">closed network, finite capacity</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-multiple-classes">closed network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-multiple-classes-1">closed network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-multiple-classes-2">closed network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-multiple-classes-3">closed network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-multiple-classes-4">closed network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-1">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-2">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-3">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-4">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-5">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-6">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-7">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-8">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-closed-network_002c-single-class-9">closed network, single class</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CMVA">CMVA</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-composite-bounds">composite bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-conditional-MVA-_0028CMVA_0029">conditional MVA (CMVA)</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-1">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-2">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028CTMC_0029">Birth-death process (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-3">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-4">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-5">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028CTMC_0029">Mean time to absorption (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-continuous-time-Markov-chain-6">continuous time Markov chain</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-convolution-algorithm">convolution algorithm</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-convolution-algorithm-1">convolution algorithm</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-copyright">copyright</a>:</td><td> </td><td valign="top"><a href="#Copying">Copying</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC">CTMC</a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-1">CTMC</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-2">CTMC</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028CTMC_0029">Birth-death process (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-3">CTMC</a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-4">CTMC</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-5">CTMC</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028CTMC_0029">Mean time to absorption (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTMC-6">CTMC</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-D">D</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-delay-center">delay center</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-deprecated-functions">deprecated functions</a>:</td><td> </td><td valign="top"><a href="#Naming-Conventions">Naming Conventions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-1">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-2">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-3">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028DTMC_0029">Birth-death process (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-4">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-5">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-6">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-discrete-time-Markov-chain-7">discrete time Markov chain</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC">DTMC</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-1">DTMC</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-2">DTMC</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-3">DTMC</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028DTMC_0029">Birth-death process (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-4">DTMC</a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-5">DTMC</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-6">DTMC</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-DTMC-7">DTMC</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-E">E</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Engset-loss-formula">Engset loss formula</a>:</td><td> </td><td valign="top"><a href="#The-Engset-Formula">The Engset Formula</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Erlang_002dB-formula">Erlang-B formula</a>:</td><td> </td><td valign="top"><a href="#The-Erlang_002dB-Formula">The Erlang-B Formula</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Erlang_002dC-formula">Erlang-C formula</a>:</td><td> </td><td valign="top"><a href="#The-Erlang_002dC-Formula">The Erlang-C Formula</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expected-sojourn-time_002c-CTMC">expected sojourn time, CTMC</a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-expected-sojourn-times_002c-DTMC">expected sojourn times, DTMC</a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-external-arrival-rate">external arrival rate</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-external-arrival-rate-1">external arrival rate</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-F">F</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-FCFS">FCFS</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-first-passage-times">first passage times</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-first-passage-times_002c-CTMC">first passage times, CTMC</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-First_002dCome_002dFirst_002dServed">First-Come-First-Served</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-fundamental-matrix">fundamental matrix</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-G">G</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-geometric-bounds">geometric bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-I">I</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-infinite-server">infinite server</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Infinite-Server">Infinite Server</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-irreducible-Markov-chain">irreducible Markov chain</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-irreducible-Markov-chain-1">irreducible Markov chain</a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-IS">IS</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-L">L</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Last_002dCome_002dFirst_002dServed-Preemptive-Resume">Last-Come-First-Served Preemptive Resume</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-LCFS_002dPR">LCFS-PR</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-load_002ddependent-service-center">load-dependent service center</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-load_002ddependent-service-center-1">load-dependent service center</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-M">M</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fG_002f1-system"><em>M/G/1</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fG_002f1-System">The M/G/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fH_005fm_002f1-system"><em>M/H_m/1</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fHm_002f1-System">The M/Hm/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fM_002f1-system"><em>M/M/1</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1-System">The M/M/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fM_002f1_002fK-system"><em>M/M/1/K</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1_002fK-System">The M/M/1/K System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fM_002finf-system"><em>M/M/</em>inf system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002finf-System">The M/M/inf System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fM_002fm-system"><em>M/M/m</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm-System">The M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-M_002fM_002fm_002fK-system"><em>M/M/m/K</em> system</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm_002fK-System">The M/M/m/K System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-1">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-2">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-3">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028CTMC_0029">Birth-death process (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-4">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-5">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-6">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028CTMC_0029">Mean time to absorption (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-continuous-time-7">Markov chain, continuous time</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-1">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-2">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-3">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028DTMC_0029">Birth-death process (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-4">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-5">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-6">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-discrete-time-7">Markov chain, discrete time</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-state-occupancy-probabilities">Markov chain, state occupancy probabilities</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-stationary-probabilities">Markov chain, stationary probabilities</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Markov-chain_002c-transient-probabilities">Markov chain, transient probabilities</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mean-recurrence-times">mean recurrence times</a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mean-time-to-absorption_002c-CTMC">mean time to absorption, CTMC</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028CTMC_0029">Mean time to absorption (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mean-time-to-absorption_002c-DTMC">mean time to absorption, DTMC</a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysis_002c-conditional-_0028CMVA_0029">Mean Value Analysis, conditional (CMVA)</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029">Mean Value Analysys (MVA)</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029-1">Mean Value Analysys (MVA)</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029-2">Mean Value Analysys (MVA)</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029-3">Mean Value Analysys (MVA)</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate">Mean Value Analysys (MVA), approximate</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-1">Mean Value Analysys (MVA), approximate</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-mixed-network">mixed network</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-closed">multiclass network, closed</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-closed-1">multiclass network, closed</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-closed-2">multiclass network, closed</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-closed-3">multiclass network, closed</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-closed-4">multiclass network, closed</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-open">multiclass network, open</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiclass-network_002c-open-1">multiclass network, open</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiple-class-queueing-network">multiple class queueing network</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-multiple-class-queueing-network-1">multiple class queueing network</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MVA">MVA</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MVA_002c-approximate">MVA, approximate</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MVA_002c-approximate-1">MVA, approximate</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-MVABLO">MVABLO</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-N">N</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-normalization-constant">normalization constant</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-normalization-constant-1">normalization constant</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-normalization-constant-2">normalization constant</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-O">O</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network">open network</a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network-1">open network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network-2">open network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network-3">open network</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network_002c-multiple-classes">open network, multiple classes</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network_002c-single-class">open network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-open-network_002c-single-class-1">open network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-P">P</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-PB-bounds">PB bounds</a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-population-mix">population mix</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-population-mix-1">population mix</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Processor-Sharing">Processor Sharing</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-product_002dform-queueing-network">product-form queueing network</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PS">PS</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-Q">Q</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network-with-blocking">queueing network with blocking</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network_002c-multiple-class">queueing network, multiple class</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network_002c-multiple-class-1">queueing network, multiple class</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network_002c-product_002dform">queueing network, product-form</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network_002c-single-class">queueing network, single class</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-network_002c-single-class-1">queueing network, single class</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-queueing-networks">queueing networks</a>:</td><td> </td><td valign="top"><a href="#Queueing-Networks">Queueing Networks</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-R">R</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-response-time">response time</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-response-time-1">response time</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-routing-probability-matrix">routing probability matrix</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-routing-probability-matrix-1">routing probability matrix</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-RS-blocking">RS blocking</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-S">S</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-service-time">service time</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-service-time-1">service time</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-single-class-queueing-network">single class queueing network</a>:</td><td> </td><td valign="top"><a href="#Introduction-to-QNs">Introduction to QNs</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-single-class-queueing-network-1">single class queueing network</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stationary-probabilities">stationary probabilities</a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-stochastic-matrix">stochastic matrix</a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-system-response-time">system response time</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-system-response-time-1">system response time</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-system-throughput">system throughput</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-system-throughput-1">system throughput</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-T">T</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-throughput">throughput</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-throughput-1">throughput</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-time_002dalveraged-sojourn-time_002c-CTMC">time-alveraged sojourn time, CTMC</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-time_002dalveraged-sojourn-time_002c-DTMC">time-alveraged sojourn time, DTMC</a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-traffic-intensity">traffic intensity</a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002finf-System">The M/M/inf System</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-U">U</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-utilization">utilization</a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-utilization-1">utilization</a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Concept-Index_cp_letter-W">W</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-warranty">warranty</a>:</td><td> </td><td valign="top"><a href="#Copying">Copying</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Concept-Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-F"><b>F</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-I"><b>I</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-L"><b>L</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-Q"><b>Q</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Concept-Index_cp_letter-W"><b>W</b></a>
</td></tr></table>
<hr>
<span id="Function-Index"></span><div class="header">
<p>
Previous: <a href="#Concept-Index" accesskey="p" rel="prev">Concept Index</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<span id="Function-Index-1"></span><h2 class="unnumbered">Function Index</h2>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Function-Index_fn_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-Q"><b>Q</b></a>
</td></tr></table>
<table class="index-fn" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Function-Index_fn_letter-C">C</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmc"><code>ctmc</code></a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmc-1"><code>ctmc</code></a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028CTMC_0029">State occupancy probabilities (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcbd"><code>ctmcbd</code></a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028CTMC_0029">Birth-death process (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcchkQ"><code>ctmcchkQ</code></a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcexps"><code>ctmcexps</code></a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcexps-1"><code>ctmcexps</code></a>:</td><td> </td><td valign="top"><a href="#Expected-sojourn-times-_0028CTMC_0029">Expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcfpt"><code>ctmcfpt</code></a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcfpt-1"><code>ctmcfpt</code></a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028CTMC_0029">First passage times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcisir"><code>ctmcisir</code></a>:</td><td> </td><td valign="top"><a href="#Continuous_002dTime-Markov-Chains">Continuous-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmcmtta"><code>ctmcmtta</code></a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028CTMC_0029">Mean time to absorption (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmctaexps"><code>ctmctaexps</code></a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctmctaexps-1"><code>ctmctaexps</code></a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028CTMC_0029">Time-averaged expected sojourn times (CTMC)</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Function-Index_fn_letter-D">D</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmc"><code>dtmc</code></a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmc-1"><code>dtmc</code></a>:</td><td> </td><td valign="top"><a href="#State-occupancy-probabilities-_0028DTMC_0029">State occupancy probabilities (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcbd"><code>dtmcbd</code></a>:</td><td> </td><td valign="top"><a href="#Birth_002ddeath-process-_0028DTMC_0029">Birth-death process (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcchkP"><code>dtmcchkP</code></a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcexps"><code>dtmcexps</code></a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcexps-1"><code>dtmcexps</code></a>:</td><td> </td><td valign="top"><a href="#Expected-number-of-visits-_0028DTMC_0029">Expected number of visits (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcfpt"><code>dtmcfpt</code></a>:</td><td> </td><td valign="top"><a href="#First-passage-times-_0028DTMC_0029">First passage times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcisir"><code>dtmcisir</code></a>:</td><td> </td><td valign="top"><a href="#Discrete_002dTime-Markov-Chains">Discrete-Time Markov Chains</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcmtta"><code>dtmcmtta</code></a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmcmtta-1"><code>dtmcmtta</code></a>:</td><td> </td><td valign="top"><a href="#Mean-time-to-absorption-_0028DTMC_0029">Mean time to absorption (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmctaexps"><code>dtmctaexps</code></a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dtmctaexps-1"><code>dtmctaexps</code></a>:</td><td> </td><td valign="top"><a href="#Time_002daveraged-expected-sojourn-times-_0028DTMC_0029">Time-averaged expected sojourn times (DTMC)</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Function-Index_fn_letter-E">E</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-engset"><code>engset</code></a>:</td><td> </td><td valign="top"><a href="#The-Engset-Formula">The Engset Formula</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erlangb"><code>erlangb</code></a>:</td><td> </td><td valign="top"><a href="#The-Erlang_002dB-Formula">The Erlang-B Formula</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-erlangc"><code>erlangc</code></a>:</td><td> </td><td valign="top"><a href="#The-Erlang_002dC-Formula">The Erlang-C Formula</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th id="Function-Index_fn_letter-Q">Q</th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnclosed"><code>qnclosed</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmaba"><code>qncmaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmaba-1"><code>qncmaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmaba-2"><code>qncmaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmaba-3"><code>qncmaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmbsb"><code>qncmbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmbsb-1"><code>qncmbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmcb"><code>qncmcb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmcb-1"><code>qncmcb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-1"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-2"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-3"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-4"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-5"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmva-6"><code>qncmmva</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmvabs"><code>qncmmvabs</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmvabs-1"><code>qncmmvabs</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmvabs-2"><code>qncmmvabs</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmvabs-3"><code>qncmmvabs</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmmvabs-4"><code>qncmmvabs</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmnpop"><code>qncmnpop</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmpopmix"><code>qncmpopmix</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmvisits"><code>qncmvisits</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncmvisits-1"><code>qncmvisits</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsaba"><code>qncsaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsaba-1"><code>qncsaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsaba-2"><code>qncsaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsaba-3"><code>qncsaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsbsb"><code>qncsbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsbsb-1"><code>qncsbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsbsb-2"><code>qncsbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsbsb-3"><code>qncsbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncscmva"><code>qncscmva</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncscmva-1"><code>qncscmva</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsconv"><code>qncsconv</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsconv-1"><code>qncsconv</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsconvld"><code>qncsconvld</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsgb"><code>qncsgb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsgb-1"><code>qncsgb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsgb-2"><code>qncsgb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsgb-3"><code>qncsgb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmva"><code>qncsmva</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmva-1"><code>qncsmva</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmva-2"><code>qncsmva</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvaap"><code>qncsmvaap</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvaap-1"><code>qncsmvaap</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvaap-2"><code>qncsmvaap</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvaap-3"><code>qncsmvaap</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvaap-4"><code>qncsmvaap</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvablo"><code>qncsmvablo</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvald"><code>qncsmvald</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsmvald-1"><code>qncsmvald</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncspb"><code>qncspb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncspb-1"><code>qncspb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncspb-2"><code>qncspb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncspb-3"><code>qncspb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsvisits"><code>qncsvisits</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qncsvisits-1"><code>qncsvisits</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmarkov"><code>qnmarkov</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmarkov-1"><code>qnmarkov</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmarkov-2"><code>qnmarkov</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmarkov-3"><code>qnmarkov</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmix"><code>qnmix</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-1"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-2"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-3"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-4"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-5"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnmknode-6"><code>qnmknode</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnom"><code>qnom</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnom-1"><code>qnom</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnom-2"><code>qnom</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnom-3"><code>qnom</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnomaba"><code>qnomaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnomaba-1"><code>qnomaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnomvisits"><code>qnomvisits</code></a>:</td><td> </td><td valign="top"><a href="#Multiple-Class-Models">Multiple Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnopen"><code>qnopen</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnos"><code>qnos</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnos-1"><code>qnos</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosaba"><code>qnosaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosaba-1"><code>qnosaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosaba-2"><code>qnosaba</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosbsb"><code>qnosbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosbsb-1"><code>qnosbsb</code></a>:</td><td> </td><td valign="top"><a href="#Bounds-Analysis">Bounds Analysis</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnosvisits"><code>qnosvisits</code></a>:</td><td> </td><td valign="top"><a href="#Single-Class-Models">Single Class Models</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnsolve"><code>qnsolve</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnsolve-1"><code>qnsolve</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnsolve-2"><code>qnsolve</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qnsolve-3"><code>qnsolve</code></a>:</td><td> </td><td valign="top"><a href="#Generic-Algorithms">Generic Algorithms</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsammm"><code>qsammm</code></a>:</td><td> </td><td valign="top"><a href="#The-Asymmetric-M_002fM_002fm-System">The Asymmetric M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmg1"><code>qsmg1</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fG_002f1-System">The M/G/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmh1"><code>qsmh1</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fHm_002f1-System">The M/Hm/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmm1"><code>qsmm1</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1-System">The M/M/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmm1-1"><code>qsmm1</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1-System">The M/M/1 System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmm1k"><code>qsmm1k</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1_002fK-System">The M/M/1/K System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmm1k-1"><code>qsmm1k</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002f1_002fK-System">The M/M/1/K System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmminf"><code>qsmminf</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002finf-System">The M/M/inf System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmminf-1"><code>qsmminf</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002finf-System">The M/M/inf System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmmm"><code>qsmmm</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm-System">The M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmmm-1"><code>qsmmm</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm-System">The M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmmm-2"><code>qsmmm</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm-System">The M/M/m System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmmmk"><code>qsmmmk</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm_002fK-System">The M/M/m/K System</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-qsmmmk-1"><code>qsmmmk</code></a>:</td><td> </td><td valign="top"><a href="#The-M_002fM_002fm_002fK-System">The M/M/m/K System</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Function-Index_fn_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Function-Index_fn_letter-Q"><b>Q</b></a>
</td></tr></table>
<hr>
</body>
</html>
|