File: queueingnetworks.texi

package info (click to toggle)
octave-queueing 1.2.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,288 kB
  • sloc: makefile: 56
file content (3990 lines) | stat: -rw-r--r-- 122,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
@c This file has been automatically generated from queueingnetworks.txi
@c by proc.m. Do not edit this file, all changes will be lost

@c -*- texinfo -*-

@c Copyright (C) 2008, 2009, 2010, 2011, 2012, 2014, 2016, 2018 Moreno Marzolla
@c
@c This file is part of the queueing package.
@c
@c The queueing package is free software; you can redistribute it
@c and/or modify it under the terms of the GNU General Public License
@c as published by the Free Software Foundation; either version 3 of
@c the License, or (at your option) any later version.
@c
@c The queueing package is distributed in the hope that it will be
@c useful, but WITHOUT ANY WARRANTY; without even the implied warranty
@c of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with the queueing package; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Queueing Networks
@chapter Queueing Networks

@menu
* Introduction to QNs::             A brief introduction to Queueing Networks
* Single Class Models::             Queueing models with a single job class
* Multiple Class Models::           Queueing models with multiple job classes
* Generic Algorithms::              High-level functions for QN analysis
* Bounds Analysis::                 Computation of asymptotic performance bounds
* QN Analysis Examples::            Queueing Networks analysis examples
@end menu

@cindex queueing networks

@c
@c INTRODUCTION
@c
@node Introduction to QNs
@section Introduction to QNs

Queueing Networks (QN) are a simple modeling notation that can be used
to analyze many kinds of systems. In its simplest form, a QN is made
of @math{K} service centers; center @math{k} has a queue connected to
@math{m_k} (usually identical) servers. Arriving customers (requests)
join the queue if there is at least one slot available. Requests are
served according to a (de)queueing policy (e.g., FIFO). After service
completes, requests leave the server and can join another queue or
exit from the system.

@cindex delay center
@cindex infinite server

Service centers where @math{m_k = \infty} are called @emph{delay
centers} or @emph{infinite servers}. In this kind of centers, there is
always one available server, so that queueing never occurs.

Requests join the queue according to a @emph{queueing policy}, such as:

@cindex First-Come-First-Served
@cindex FCFS
@cindex Last-Come-First-Served Preemptive Resume
@cindex LCFS-PR
@cindex Processor Sharing
@cindex PS
@cindex Infinite Server
@cindex IS

@table @strong

@item FCFS
First-Come-First-Served

@item LCFS-PR
Last-Come-First-Served, Preemptive Resume

@item PS
Processor Sharing

@item IS
Infinite Server (@math{m_k = \infty}).

@end table

Queueing networks can be @emph{open} or @emph{closed}. In open
networks there is an infinite population of requests; new customers
are generated outside the system, and eventually leave the network. In
closed networks there is a fixed population of request that never
leave the system.

@cindex single class queueing network
@cindex multiple class queueing network
@cindex queueing network, single class
@cindex queueing network, multiple class

Queueing models can have a single request class (@emph{single class
models}), meaning that all requests behave in the same way (e.g., they
spend the same average time on each particular server). In
@emph{multiple class models} there are multiple request classes, each
with its own parameters (e.g., with different service times or
different routing probabilities). Furthermore, in multiclass models
there can be open and closed chains of requests at the same time.

@cindex product-form queueing network
@cindex queueing network, product-form

A particular class of QN models, @emph{product-form} networks, is of
particular interest. Product-form networks fulfill the following
assumptions:

@itemize

@item The network can consist of open and closed job classes.

@item The following queueing disciplines are allowed: FCFS, PS, LCFS-PR and IS.

@item Service times for FCFS nodes must be exponentially distributed and
class-independent. Service centers at PS, LCFS-PR and IS nodes can
have any kind of service time distribution with a rational Laplace
transform.  Furthermore, for PS, LCFS-PR and IS nodes, different
classes of customers can have different service times.

@item The service rate of an FCFS node is only allowed to depend on the
number of jobs at this node; in a PS, LCFS-PR and IS node the service
rate for a particular job class can also depend on the number of jobs
of that class at the node.

@item In open networks two kinds of arrival processes are allowed: i) the
arrival process is Poisson, with arrival rate @math{\lambda} that can
depend on the number of jobs in the network. ii) the arrival process
consists of @math{C} independent Poisson arrival streams where the
@math{C} job sources are assigned to the @math{C} chains; the arrival
rate can be load dependent.

@end itemize

Product-form networks are attractive because steady-state performance
measures can be efficiently computed.

@c
@c Single Class Models
@c

@node Single Class Models
@section Single Class Models

@cindex single class queueing network
@cindex queueing network, single class

In single class models, all requests are indistinguishable and belong
to the same class. This means that every request has the same average
service time, and all requests move through the system with the same
routing probabilities.

@noindent @strong{Model Inputs}

@cindex external arrival rate
@cindex service time
@cindex routing probability matrix
@cindex average number of visits

@table @asis

@item @math{{@lambda}_k}
(Open models only) External arrival rate to service center @math{k}.

@item @math{@lambda}
(Open models only) Overall external arrival rate to the system as a whole: @math{\lambda = \sum_k \lambda_k}.

@item @math{N}
(Closed models only) Total number of requests in the system.

@item @math{S_k}
Mean service time at center @math{k}. @math{S_k} is the average time
elapsed from service start to service completion at center @math{k}.

@item @math{P_{i, j}}
Routing probability matrix. @math{{\bf P} = [P_{i, j}]} is a @math{K
\times K} matrix where @math{P_{i, j}} is the probability that a
request completing service at center @math{i} is routed to center
@math{j}. The probability that a request leaves the system after being
served at center @math{i} is @math{\left(1-\sum_{j=1}^K P_{i, j}\right)}.

@item @math{V_k}
Mean number of visits to center @math{k} (also called @emph{visit
ratio} or @emph{relative arrival rate}).

@end table

@noindent @strong{Model Outputs}

@cindex utilization
@cindex response time
@cindex average number of customers
@cindex throughput
@cindex system response time
@cindex system throughput

@table @math

@item U_k
Utilization of service center @math{k}. The utilization is defined as
the fraction of time in which the resource is busy (i.e., the server
is processing requests).  If center @math{k} is a single-server or
multiserver node, then @math{0 @leq{} U_k @leq{} 1}. If center
@math{k} is an infinite server node (delay center), then @math{U_k}
denotes the @emph{traffic intensity} and is defined as @math{U_k = X_k
S_k}; in this case the utilization may be greater than one.

@item R_k
Average response time of service center @math{k}, defined as the mean
time between the arrival of a request in the queue and service
completion of the same request.

@item Q_k
Average number of requests in center @math{k}; this includes both the
requests in the queue and those being served.

@item X_k
Throughput of service center @math{k}. The throughput is the rate of
job completions, i.e., the average number of jobs completed over a
given time interval.

@end table

@noindent Given the output parameters above, additional performance measures can
be computed:

@table @math

@item X
System throughput, @math{X = X_k / V_k} for any @math{k} for 
which @math{V_k \neq 0}

@item R
System response time, @math{R = \sum_{k=1}^K R_k V_k}

@item Q
Average number of requests in the system, @math{Q = \sum_{k=1}^K Q_k}; for
closed systems, this can be written as @math{Q = N-XZ};

@end table

For open, single class models, the scalar @math{\lambda} denotes the
external arrival rate of requests to the system. The average number of
visits @math{V_j} satisfy the following equation:

@iftex
@tex
$$ V_j = P_{0, j} + \sum_{i=1}^K V_i P_{i, j} \quad j=1, \ldots, K $$
@end tex
@end iftex
@ifnottex
@example
@group
                  K
                 ___
                \
V_j = P_(0, j) + >   V_i P_(i, j)    j=1,...,K
                /___
                 i=1
@end group
@end example
@end ifnottex

@noindent where @math{P_{0, j}} is the probability that an external
request goes to center @math{j}. If we denote with @math{\lambda_j}
the external arrival rate to center @math{j}, and @math{\lambda =
\sum_j \lambda_j} the overall external arrival rate, then @math{P_{0,
j} = \lambda_j / \lambda}.

For closed models, the visit ratios satisfy the following equation:

@iftex
@tex
$$\left\{\eqalign{V_j & = \sum_{i=1}^K V_i P_{i, j} \quad j=1, \ldots, K \cr
                  V_r & = 1 \quad \hbox{for a selected reference station $r$}}\right. $$
@end tex
@end iftex
@ifnottex
@example
/
|         K
|        ___
|       \
| V_j =  >   V_i P_(i, j)     j=1,...,K
|       /___
|        i=1
|
| V_r = 1                     for a selected reference station r
\
@end example
@end ifnottex

Note that the set of traffic equations @math{V_j = \sum_{i=1}^K V_i
P_{i, j}} alone can only be solved up to a multiplicative constant; to
get a unique solution we impose an additional constraint @math{V_r =
1} for some @math{1 @leq{} r @leq{} K}. This constraint is equivalent
to defining station @math{r} as the @emph{reference station}; the
default is @math{r=1}, @pxref{doc-qncsvisits}. A job that returns to
the reference station is assumed to have completed its activity
cycle. The network throughput is set to the throughput of the
reference station.

@anchor{doc-qncsvisits}


@deftypefn {Function File} {@var{V} =} qncsvisits (@var{P})
@deftypefnx {Function File} {@var{V} =} qncsvisits (@var{P}, @var{r})

Compute the mean number of visits to the service centers of a
single class, closed network with @math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{P}(i,j)
probability that a request which completed service at center
@math{i} is routed to center @math{j} (@math{K \times K} matrix).
For closed networks it must hold that @code{sum(@var{P},2)==1}. The
routing graph must be strongly connected, meaning that each node
must be reachable from every other node.

@item @var{r}
Index of the reference station, @math{r \in @{1, @dots{}, K@}};
Default @code{@var{r}=1}. The traffic equations are solved by
imposing the condition @code{@var{V}(r) = 1}. A request returning to
the reference station completes its activity cycle.

@end table

@strong{OUTPUTS}

@table @code

@item @var{V}(k)
average number of visits to service center @math{k}, assuming
@math{r} as the reference station.

@end table

@end deftypefn


@anchor{doc-qnosvisits}


@deftypefn {Function File} {@var{V} =} qnosvisits (@var{P}, @var{lambda})

Compute the average number of visits to the service centers of a single
class open Queueing Network with @math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{P}(i,j)
is the probability that a request which completed service at center
@math{i} is routed to center @math{j} (@math{K \times K} matrix).

@item @var{lambda}(k)
external arrival rate to center @math{k}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{V}(k)
average number of visits to server @math{k}.

@end table

@end deftypefn


@c
@c
@c
@noindent @strong{EXAMPLE}

@float Figure,fig:qn_closed_single
@center @image{./qn_closed_single,3in}
@caption{Closed network with a single class of requests}
@end float

@ref{fig:qn_closed_single} shows a closed queueing network with a
single class of requests. The network has three service centers,
labeled @emph{CPU}, @emph{Disk1} and @emph{Disk2}, and is known as a
@emph{central server} model of a computer system. Requests spend some
time at the CPU, which is represented by a PS (Processor Sharing)
node. After that, requests are routed to Disk1 with probability
@math{0.3}, and to Disk2 with probability @math{0.7}. Both Disk1 and
Disk2 are FCFS nodes.

If we label the servers as CPU=1, Disk1=2, Disk2=3, we can define the
routing matrix as follows:

@iftex
@tex
$$
{\bf P} = \pmatrix{ 0 & 0.3 & 0.7 \cr
                    1 & 0 & 0 \cr
                    1 & 0 & 0 }
$$
@end tex
@end iftex
@ifnottex
@example
    / 0  0.3  0.7 \
P = | 1  0    0   |
    \ 1  0    0   /
@end example
@end ifnottex

The visit ratios @math{V}, using station 1 as the reference
station, can be computed with:

@example
@verbatim
 P = [0 0.3 0.7; ...
      1 0   0  ; ...
      1 0   0  ];
 V = qncsvisits(P)
@end verbatim
   @result{} V = 1.00000   0.30000   0.70000
@end example

@noindent @strong{EXAMPLE}

@float Figure,fig:qn_open_single
@center @image{./qn_open_single,3in}
@caption{Open Queueing Network with a single class of requests}
@end float

@ref{fig:qn_open_single} shows a open QN with a single class of
requests. The network has the same structure as the one in
@ref{fig:qn_closed_single}, with the difference that here we have a
stream of jobs arriving from outside the system, at a rate
@math{\lambda}. After service completion at the CPU, a job can leave
the system with probability @math{0.2}, or be transferred to other
nodes with the probabilities shown in the figure.

The routing matrix is

@iftex
@tex
$$
{\bf P} = \pmatrix{ 0 & 0.3 & 0.5 \cr
                    1 & 0 & 0 \cr
                    1 & 0 & 0 }
$$
@end tex
@end iftex
@ifnottex
@example
    / 0  0.3  0.5 \
P = | 1  0    0   |
    \ 1  0    0   /
@end example
@end ifnottex

If we let @math{\lambda = 1.2}, we can compute the visit ratios
@math{V} as follows:

@example
@verbatim
 p = 0.3;
 lambda = 1.2
 P = [0 0.3 0.5; 1 0 0; 1 0 0];
 V = qnosvisits(P,[1.2 0 0])
@end verbatim
   @result{} V = 5.0000   1.5000   2.5000
@end example

Function @command{qnosvisits} expects a vector with @math{K} elements
as a second parameter, for open networks only. The vector contains the
arrival rates at each individual node; since in our example external
arrivals exist only for node @math{S_1} with rate @math{\lambda =
1.2}, the second parameter is @code{[1.2, 0, 0]}.

@c
@c Open Networks
@c
@subsection Open Networks

Jackson networks satisfy the following conditions:

@itemize

@item
There is only one job class in the network; the total number of jobs
in the system is unbounded.

@item
There are @math{K} service centers in the network. Each service center
may have Poisson arrivals from outside the system. A job can leave
the system from any node.

@item
Arrival rates as well as routing probabilities are independent from
the number of nodes in the network.

@item
External arrivals and service times at the service centers are
exponentially distributed, and in general can be load-dependent.

@item
Service discipline at each node is FCFS

@end itemize

We define the @emph{joint probability vector} @math{\pi(n_1,
@dots{}, n_K)} as the steady-state probability that there are @math{n_k}
requests at service center @math{k}, for all @math{k=1, @dots{}, N}.
Jackson networks have the property that the joint probability is the
product of the marginal probabilities @math{\pi_k}:

@iftex
@tex
$$ \pi(n_1, \ldots, n_K) = \prod_{k=1}^K \pi_k(n_k) $$
@end tex
@end iftex
@ifnottex
@example
@var{joint_prob} = prod( @var{pi} )
@end example
@end ifnottex

@noindent where @math{\pi_k(n_k)} is the steady-state probability
that there are @math{n_k} requests at service center @math{k}.

@anchor{doc-qnos}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnos (@var{lambda}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnos (@var{lambda}, @var{S}, @var{V}, @var{m})

@cindex open network, single class
@cindex BCMP network

Analyze open, single class BCMP queueing networks with @math{K} service centers.

This function works for a subset of BCMP single-class open networks
satisfying the following properties:

@itemize

@item The allowed service disciplines at network nodes are: FCFS,
PS, LCFS-PR, IS (infinite server);

@item Service times are exponentially distributed and
load-independent;

@item Center @math{k} can consist of @code{@var{m}(k) @geq{} 1}
identical servers.

@item Routing is load-independent

@end itemize

@strong{INPUTS}

@table @code

@item @var{lambda}
Overall external arrival rate (@code{@var{lambda}>0}).

@item @var{S}(k)
average service time at center @math{k} (@code{@var{S}(k)>0}).

@item @var{V}(k)
average number of visits to center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{i}. If @code{@var{m}(k) < 1},
enter @math{k} is a delay center (IS); otherwise it is a regular
queueing center with @code{@var{m}(k)} servers. Default is
@code{@var{m}(k) = 1} for all @math{k}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
If @math{k} is a queueing center,
@code{@var{U}(k)} is the utilization of center @math{k}.
If @math{k} is an IS node, then @code{@var{U}(k)} is the
@emph{traffic intensity} defined as @code{@var{X}(k)*@var{S}(k)}.

@item @var{R}(k)
center @math{k} average response time.

@item @var{Q}(k)
average number of requests at center @math{k}.

@item @var{X}(k)
center @math{k} throughput.

@end table

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998
@end itemize

@xseealso{qnopen,qnclosed,qnosvisits}

@end deftypefn


From the results computed by this function, it is possible to derive
other quantities of interest as follows:

@itemize

@item
@strong{System Response Time}: The overall system response time
can be computed as
@iftex
@tex
$R_s = \sum_{k=1}^K V_k R_k$
@end tex
@end iftex
@ifnottex
@code{R_s = dot(V,R);}
@end ifnottex

@item
@strong{Average number of requests}: The average number of requests
in the system can be computed as:
@iftex
@tex
$$Q_{avg} = \sum_{k=1}^K Q_k$$
@end tex
@end iftex
@ifnottex
@code{Q_avg = sum(Q)}
@end ifnottex

@end itemize

@noindent @strong{EXAMPLE}

@example
@verbatim
 lambda = 3;
 V = [16 7 8];
 S = [0.01 0.02 0.03];
 [U R Q X] = qnos( lambda, S, V );
 R_s = dot(R,V) # System response time
 N = sum(Q) # Average number in system
@end verbatim
@print{} R_s =  1.4062
@print{} N =  4.2186
@end example

@c
@c Closed Networks
@c
@subsection Closed Networks

@anchor{doc-qncsmva}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})

@cindex Mean Value Analysys (MVA)
@cindex closed network, single class
@cindex normalization constant

Analyze closed, single class queueing networks using the exact Mean Value Analysis (MVA) algorithm.

The following queueing disciplines are supported: FCFS, LCFS-PR, PS
and IS (Infinite Server). This function supports fixed-rate service
centers or multiple server nodes. For general load-dependent service
centers, use the function @code{qncsmvald} instead.

Additionally, the normalization constant @math{G(n)}, @math{n=0,
@dots{}, N} is computed; @math{G(n)} can be used in conjunction with
the BCMP theorem to compute steady-state probabilities.

@strong{INPUTS}

@table @code

@item @var{N}
Population size (number of requests in the system, @code{@var{N} @geq{} 0}).
If @code{@var{N} == 0}, this function returns
@code{@var{U} = @var{R} = @var{Q} = @var{X} = 0}

@item @var{S}(k)
mean service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
average number of visits to service center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{Z}
External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.

@item @var{m}(k)
number of servers at center @math{k} (if @var{m} is a scalar, all
centers have that number of servers). If @code{@var{m}(k) < 1},
center @math{k} is a delay center (IS); otherwise it is a regular
queueing center (FCFS, LCFS-PR or PS) with @code{@var{m}(k)}
servers. Default is @code{@var{m}(k) = 1} for all @math{k} (each
service center has a single server).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) @geq{}
1}), then @code{@var{U}(k)} is the utilization of center @math{k},
@math{0 @leq{} U(k) @leq{} 1}. If @math{k} is an IS node
(@code{@var{m}(k) < 1}), then @code{@var{U}(k)} is the @emph{traffic
intensity} defined as @code{@var{X}(k)*@var{S}(k)}. In this case the
value of @code{@var{U}(k)} may be greater than one.

@item @var{R}(k)
center @math{k} response time. The @emph{Residence Time} at center
@math{k} is @code{@var{R}(k) * @var{V}(k)}. The system response
time @var{Rsys} can be computed either as @code{@var{Rsys} =
@var{N}/@var{Xsys} - Z} or as @code{@var{Rsys} =
dot(@var{R},@var{V})}

@item @var{Q}(k)
average number of requests at center @math{k}. The number of
requests in the system can be computed either as
@code{sum(@var{Q})}, or using the formula
@code{@var{N}-@var{Xsys}*@var{Z}}.

@item @var{X}(k)
center @math{K} throughput. The system throughput @var{Xsys} can be
computed as @code{@var{Xsys} = @var{X}(1) / @var{V}(1)}

@item @var{G}(n)
Normalization constants. @code{@var{G}(n+1)} contains the value of
the normalization constant @math{G(n)}, @math{n=0, @dots{}, N} as
array indexes in Octave start from 1. @math{G(n)} can be used in
conjunction with the BCMP theorem to compute steady-state
probabilities.

@end table

@strong{NOTES}

In presence of load-dependent servers (i.e., if @code{@var{m}(k)>1}
for some @math{k}), the MVA algorithm is known to be numerically
unstable. Generally, this issue manifests itself as negative values
for the response times or utilizations. This is not a problem of
the @code{queueing} toolbox, but of the MVA algorithm, and has
currently no known solution. This function prints a warning if
numerical problems are detected; the warning can be disabled with
the command @code{warning("off", "qn:numerical-instability")}.

@strong{REFERENCES}

@itemize
@item
M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2, April
1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
@end itemize

This implementation is described in R. Jain , @cite{The Art of
Computer Systems Performance Analysis}, Wiley, 1991, p. 577.
Multi-server nodes are treated according to G. Bolch, S. Greiner,
H. de Meer and K. Trivedi, @cite{Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science
Applications}, Wiley, 1998, Section 8.2.1, "Single Class Queueing
Networks".

@xseealso{qncsmvald,qncscmva}

@end deftypefn



@noindent @strong{EXAMPLE}

@example
@verbatim
 S = [ 0.125 0.3 0.2 ];
 V = [ 16 10 5 ];
 N = 20;
 m = ones(1,3);
 Z = 4;
 [U R Q X] = qncsmva(N,S,V,m,Z);
 X_s = X(1)/V(1); # System throughput
 R_s = dot(R,V); # System response time
 printf("\t    Util      Qlen     RespT      Tput\n");
 printf("\t--------  --------  --------  --------\n");
 for k=1:length(S)
   printf("Dev%d\t%8.4f  %8.4f  %8.4f  %8.4f\n", k, U(k), Q(k), R(k), X(k) );
 endfor
 printf("\nSystem\t          %8.4f  %8.4f  %8.4f\n\n", N-X_s*Z, R_s, X_s );
@end verbatim
@end example

@c
@c MVA for single class, closed networks with load dependent servers
@c
@anchor{doc-qncsmvald}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvald (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvald (@var{N}, @var{S}, @var{V}, @var{Z})

@cindex Mean Value Analysys (MVA)
@cindex MVA
@cindex closed network, single class
@cindex load-dependent service center

Mean Value Analysis algorithm for closed, single class queueing
networks with @math{K} service centers and load-dependent service
times. This function supports FCFS, LCFS-PR, PS and IS nodes. For
networks with only fixed-rate centers and multiple-server
nodes, the function @code{qncsmva} is more efficient.

@strong{INPUTS}

@table @code

@item @var{N}
Population size (number of requests in the system, @code{@var{N} @geq{} 0}).
If @code{@var{N} == 0}, this function returns @code{@var{U} = @var{R} = @var{Q} = @var{X} = 0}

@item @var{S}(k,n)
mean service time at center @math{k}
where there are @math{n} requests, @math{1 @leq{} n
@leq{} N}. @code{@var{S}(k,n)} @math{= 1 / \mu_{k}(n)},
where @math{\mu_{k}(n)} is the service rate of center @math{k}
when there are @math{n} requests.

@item @var{V}(k)
average number of visits to service center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{Z}
external delay ("think time", @code{@var{Z} @geq{} 0}); default 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
utilization of service center @math{k}. The
utilization is defined as the probability that service center
@math{k} is not empty, that is, @math{U_k = 1-\pi_k(0)} where
@math{\pi_k(0)} is the steady-state probability that there are 0
jobs at service center @math{k}.

@item @var{R}(k)
response time on service center @math{k}.

@item @var{Q}(k)
average number of requests in service center @math{k}.

@item @var{X}(k)
throughput of service center @math{k}.

@end table

@strong{NOTES}

In presence of load-dependent servers, the MVA algorithm is known
to be numerically unstable. Generally this problem manifests itself
as negative response times or utilization.

@strong{REFERENCES}

@itemize
@item
M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2,
April 1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
@end itemize

This implementation is described in G. Bolch, S. Greiner, H. de Meer
and K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications}, Wiley,
1998, Section 8.2.4.1, ``Networks with Load-Dependent Service: Closed
Networks''.

@xseealso{qncsmva}

@end deftypefn


@c
@c CMVA for single class, closed networks with a single load dependent servers
@c
@anchor{doc-qncscmva}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncscmva (@var{N}, @var{S}, @var{Sld}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncscmva (@var{N}, @var{S}, @var{Sld}, @var{V}, @var{Z})

@cindex conditional MVA (CMVA)
@cindex Mean Value Analysis, conditional (CMVA)
@cindex closed network, single class
@cindex CMVA

Conditional MVA (CMVA) algorithm, a numerically stable variant of
MVA. This function supports a network of @math{M @geq{} 1} service
centers and a single delay center. Servers @math{1, @dots{}, (M-1)}
are load-independent; server @math{M} is load-dependent.

@strong{INPUTS}

@table @code

@item @var{N}
Number of requests in the system, @code{@var{N} @geq{} 0}. If
@code{@var{N} == 0}, this function returns @code{@var{U} = @var{R}
= @var{Q} = @var{X} = 0}

@item @var{S}(k)
mean service time on server @math{k = 1, @dots{}, (M-1)}
(@code{@var{S}(k) > 0}). If there are no fixed-rate servers, then
@code{S = []}

@item @var{Sld}(n)
inverse service rate at server @math{M} (the load-dependent server)
when there are @math{n} requests, @math{n=1, @dots{}, N}.
@code{@var{Sld}(n) = } @math{1 / \mu(n)}.

@item @var{V}(k)
average number of visits to service center @math{k=1, @dots{}, M},
where @code{@var{V}(k) @geq{} 0}. @code{@var{V}(1:M-1)} are the
visit rates to the fixed rate servers; @code{@var{V}(M)} is the
visit rate to the load dependent server.

@item @var{Z}
External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
center @math{k} utilization (@math{k=1, @dots{}, M})

@item @var{R}(k)
response time of center @math{k} (@math{k=1, @dots{}, M}). The
system response time @var{Rsys} can be computed as @code{@var{Rsys}
= @var{N}/@var{Xsys} - Z}

@item @var{Q}(k)
average number of requests at center @math{k} (@math{k=1, @dots{}, M}).

@item @var{X}(k)
center @math{k} throughput (@math{k=1, @dots{}, M}).

@end table

@strong{REFERENCES}

@itemize
@item
G. Casale. @cite{A note on stable flow-equivalent aggregation in
closed networks}. Queueing Syst. Theory Appl., 60:193–-202, December
2008, @uref{http://dx.doi.org/10.1007/s11134-008-9093-6, 10.1007/s11134-008-9093-6}
@end itemize

@end deftypefn


@c
@c Approximate MVA for single class, closed networks
@c
@anchor{doc-qncsmvaap}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvaap (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol}, @var{iter_max})

@cindex Mean Value Analysys (MVA), approximate
@cindex MVA, approximate
@cindex approximate MVA
@cindex closed network, single class
@cindex closed network, approximate analysis

Analyze closed, single class queueing networks using the Approximate
Mean Value Analysis (MVA) algorithm. This function is based on
approximating the number of customers seen at center @math{k} when a
new request arrives as @math{Q_k(N) \times (N-1)/N}. This function
only handles single-server and delay centers; if your network
contains general load-dependent service centers, use the function
@code{qncsmvald} instead.

@strong{INPUTS}

@table @code

@item @var{N}
Population size (number of requests in the system, @code{@var{N} > 0}).

@item @var{S}(k)
mean service time on server @math{k}
(@code{@var{S}(k)>0}).

@item @var{V}(k)
average number of visits to service center
@math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}
(if @var{m} is a scalar, all centers have that number of servers). If
@code{@var{m}(k) < 1}, center @math{k} is a delay center (IS); if
@code{@var{m}(k) == 1}, center @math{k} is a regular queueing
center (FCFS, LCFS-PR or PS) with one server (default). This function
does not support multiple server nodes (@code{@var{m}(k) > 1}).

@item @var{Z}
External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.

@item @var{tol}
Stopping tolerance. The algorithm stops when the maximum relative
difference between the new and old value of the queue lengths
@var{Q} becomes less than the tolerance. Default is @math{10^{-5}}.

@item @var{iter_max}
Maximum number of iterations (@code{@var{iter_max}>0}.
The function aborts if convergenge is not reached within the maximum
number of iterations. Default is 100.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) == 1}),
then @code{@var{U}(k)} is the utilization of center @math{k}. If
@math{k} is an IS node (@code{@var{m}(k) < 1}), then
@code{@var{U}(k)} is the @emph{traffic intensity} defined as
@code{@var{X}(k)*@var{S}(k)}.

@item @var{R}(k)
response time at center @math{k}.
The system response time @var{Rsys}
can be computed as @code{@var{Rsys} = @var{N}/@var{Xsys} - Z}

@item @var{Q}(k)
average number of requests at center @math{k}. The number of
requests in the system can be computed either as
@code{sum(@var{Q})}, or using the formula
@code{@var{N}-@var{Xsys}*@var{Z}}.

@item @var{X}(k)
center @math{k} throughput. The system throughput @var{Xsys} can be
computed as @code{@var{Xsys} = @var{X}(1) / @var{V}(1)}

@end table

@strong{REFERENCES}

This implementation is based on Edward D. Lazowska, John Zahorjan,
G. Scott Graham, and Kenneth C. Sevcik, @cite{Quantitative System
Performance: Computer System Analysis Using Queueing Network Models},
Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 6.4.2.2 ("Approximate Solution Techniques").

@xseealso{qncsmva,qncsmvald}

@end deftypefn


@c
@c Convolution
@c

According to the BCMP theorem, the state probability of a closed
single class queueing network with @math{K} nodes and @math{N} requests
can be expressed as:

@iftex
@tex
$$ \pi(n_1, \ldots, n_K) = {1 \over G(N)} \prod_{k=1}^K F_k(n_k) $$
@end tex
@end iftex
@ifnottex
@example
@group
n = [n1, @dots{} nK]; @r{population vector}
p = 1/G(N+1) \prod F(k,k);
@end group
@end example
@end ifnottex

Here @math{\pi(n_1, @dots{}, n_K)} is the joint probability of
having @math{n_k} requests at node @math{k}, for all @math{k=1,
@dots{}, K}; we have that @math{\sum_{k=1}^K n_k = N}

The @emph{convolution algorithms} computes the normalization constants
@math{{\bf G} = \left[G(0), @dots{}, G(N)\right]} for single-class,
closed networks with @math{N} requests.  The normalization constants
are returned as vector @code{@var{G}=[@var{G}(1), @dots{}
@var{G}(N+1)]} where @code{@var{G}(i+1)} is the value of @math{G(i)}
(remember that Octave uses 1-base vectors). The normalization constant
can be used to compute all performance measures of interest
(utilization, average response time and so on).

@command{queueing} implements the convolution algorithm, in the function
@command{qncsconv} and @command{qncsconvld}. The first one
supports single-station nodes, multiple-station nodes and IS nodes.
The second one supports networks with general load-dependent service
centers.


@anchor{doc-qncsconv}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsconv (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsconv (@var{N}, @var{S}, @var{V}, @var{m})

@cindex closed network, single class
@cindex normalization constant
@cindex convolution algorithm

Analyze product-form, single class closed networks with @math{K} service centers using the convolution algorithm.

Load-independent service centers, multiple servers (@math{M/M/m}
queues) and IS nodes are supported. For general load-dependent
service centers, use @code{qncsconvld} instead.

@strong{INPUTS}

@table @code

@item @var{N}
Number of requests in the system (@code{@var{N}>0}).

@item @var{S}(k)
average service time on center @math{k} (@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
visit count of service center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. If @code{@var{m}(k) < 1},
center @math{k} is a delay center (IS); if @code{@var{m}(k) @geq{}
1}, center @math{k} it is a regular @math{M/M/m} queueing center
with @code{@var{m}(k)} identical servers. Default is
@code{@var{m}(k) = 1} for all @math{k}.

@end table

@strong{OUTPUT}

@table @code

@item @var{U}(k)
center @math{k} utilization.
For IS nodes, @code{@var{U}(k)} is the @emph{traffic intensity}
@code{@var{X}(k) * @var{S}(k)}.

@item @var{R}(k)
average response time of center @math{k}.

@item @var{Q}(k)
average number of customers at center @math{k}.

@item @var{X}(k)
throughput of center @math{k}.

@item @var{G}(n)
Vector of normalization constants. @code{@var{G}(n+1)} contains the value of
the normalization constant with @math{n} requests
@math{G(n)}, @math{n=0, @dots{}, N}.

@end table

@strong{NOTE}

For a network with @math{K} service centers and @math{N} requests,
this implementation of the convolution algorithm has time and space
complexity @math{O(NK)}.

@strong{REFERENCES}

@itemize
@item
Jeffrey P. Buzen, @cite{Computational Algorithms for Closed Queueing
Networks with Exponential Servers}, Communications of the ACM, volume
16, number 9, September 1973,
pp. 527--531. @uref{http://doi.acm.org/10.1145/362342.362345, 10.1145/362342.362345}
@end itemize

This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications}, Wiley,
1998, pp. 313--317.

@xseealso{qncsconvld}

@end deftypefn



@noindent @strong{EXAMPLE}

The normalization constant @math{G} can be used to compute the
steady-state probabilities for a closed single class product-form
Queueing Network with @math{K} nodes and @math{N} requests. Let
@code{@var{n} = [@math{n_1, @dots{}, n_K}]} be a valid
population vector, @math{\sum_{k=1}^K n_k = N}. Then, the steady-state
probability @code{@var{p}(k)} to have @code{@var{n}(k)} requests at
service center @math{k} can be computed as:

@iftex
@tex
$$
p_k(n_k) = {(V_k S_k)^{n_k} \over G(N)} \left(G(N-n_k) - V_k S_k G(N-n_k-1)\right), \quad k=1, \ldots, K
$$
@end tex
@end iftex

@example
@verbatim
 n = [1 2 0];
 N = sum(n); # Total population size
 S = [ 1/0.8 1/0.6 1/0.4 ];
 m = [ 2 3 1 ];
 V = [ 1 .667 .2 ];
 [U R Q X G] = qncsconv( N, S, V, m );
 p = [0 0 0]; # initialize p
 # Compute the probability to have n(k) jobs at service center k
 for k=1:3
   p(k) = (V(k)*S(k))^n(k) / G(N+1) * ...
          (G(N-n(k)+1) - V(k)*S(k)*G(N-n(k)) );
   printf("Prob( n(%d) = %d )=%f\n", k, n(k), p(k) );
 endfor
@end verbatim
@print{} Prob( n(1) = 1 ) = 0.17975
@print{} Prob( n(2) = 2 ) = 0.48404
@print{} Prob( n(3) = 0 ) = 0.52779
@end example

@noindent 
(recall that @code{@var{G}(@var{N}+1)} represents @math{G(N)}, since
in Octave array indices start at one).


@c
@anchor{doc-qncsconvld}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsconvld (@var{N}, @var{S}, @var{V})

@cindex closed network
@cindex normalization constant
@cindex convolution algorithm
@cindex load-dependent service center

Convolution algorithm for product-form, single-class closed
queueing networks with @math{K} general load-dependent service
centers.

This function computes steady-state performance measures for
single-class, closed networks with load-dependent service centers
using the convolution algorithm; the normalization constants are also
computed. The normalization constants are returned as vector
@code{@var{G}=[@var{G}(1), @dots{}, @var{G}(N+1)]} where
@code{@var{G}(i+1)} is the value of @math{G(i)}.

@strong{INPUTS}

@table @code

@item @var{N}
Number of requests in the system (@code{@var{N}>0}).

@item @var{S}(k,n)
mean service time at center @math{k} where there are @math{n}
requests, @math{1 @leq{} n @leq{} N}. @code{@var{S}(k,n)} @math{= 1 / \mu_{k,n}}, where @math{\mu_{k,n}} is the service rate of center
@math{k} when there are @math{n} requests.

@item @var{V}(k)
visit count of service center @math{k}
(@code{@var{V}(k) @geq{} 0}). The length of @var{V} is the number of
servers @math{K} in the network.

@end table

@strong{OUTPUT}

@table @code

@item @var{U}(k)
center @math{k} utilization.

@item @var{R}(k)
average response time at center @math{k}.

@item @var{Q}(k)
average number of requests in center @math{k}.

@item @var{X}(k)
center @math{k} throughput.

@item @var{G}(n)
Normalization constants (vector). @code{@var{G}(n+1)}
corresponds to @math{G(n)}, as array indexes in Octave start
from 1.

@end table

@strong{REFERENCES}

@itemize
@item
Herb Schwetman, @cite{Some Computational Aspects of Queueing Network
Models}, Technical Report
@uref{http://docs.lib.purdue.edu/cstech/285/, CSD-TR-354}, Department
of Computer Sciences, Purdue University, February 1981 (revised).

@item
M. Reiser, H. Kobayashi, @cite{On The Convolution Algorithm for
Separable Queueing Networks}, In Proceedings of the 1976 ACM
SIGMETRICS Conference on Computer Performance Modeling Measurement and
Evaluation (Cambridge, Massachusetts, United States, March 29--31,
1976). SIGMETRICS '76. ACM, New York, NY,
pp. 109--117. @uref{http://doi.acm.org/10.1145/800200.806187, 10.1145/800200.806187}
@end itemize

This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications}, Wiley,
1998, pp. 313--317. Function @command{qncsconvld} is slightly
different from the version described in Bolch et al. because it
supports general load-dependent centers (while the version in the book
does not). The modification is in the definition of function
@code{F()} in @command{qncsconvld} which has been made similar to
function @math{f_i} defined in Schwetman, @cite{Some Computational
Aspects of Queueing Network Models}.

@xseealso{qncsconv}

@end deftypefn



@c
@c
@c
@subsection Non Product-Form QNs
@anchor{Non Product-Form QNs}

@c
@c MVABLO algorithm for approximate analysis of closed, single class
@c QN with blocking
@c
@anchor{doc-qncsmvablo}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvablo (@var{N}, @var{S}, @var{M}, @var{P} )

@cindex queueing network with blocking
@cindex blocking queueing network
@cindex closed network, finite capacity
@cindex MVABLO

Approximate MVA algorithm for closed queueing networks with blocking.

@strong{INPUTS}

@table @code

@item @var{N}
number of requests in the system. @var{N} must be strictly greater
than zero, and less than the overall network capacity: @code{0 <
@var{N} < sum(@var{M})}.

@item @var{S}(k)
average service time on server @math{k} (@code{@var{S}(k) > 0}).

@item @var{M}(k)
capacity of center @math{k}. The capacity is the maximum number of requests in a service
center, including the request in service (@code{@var{M}(k) @geq{} 1}).

@item @var{P}(i,j)
probability that a request which completes
service at server @math{i} will be transferred to server @math{j}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
center @math{k} utilization.

@item @var{R}(k)
average response time of service center @math{k}.

@item @var{Q}(k)
average number of requests in service center @math{k} (including
the request in service).

@item @var{X}(k)
center @math{k} throughput.

@end table

@strong{REFERENCES}

@itemize
@item
Ian F. Akyildiz, @cite{Mean Value Analysis for Blocking Queueing
Networks}, IEEE Transactions on Software Engineering, vol. 14, n. 2,
april 1988, pp. 418--428.  @uref{http://dx.doi.org/10.1109/32.4663, 10.1109/32.4663}
@end itemize

@xseealso{qnopen, qnclosed}

@end deftypefn


@c
@anchor{doc-qnmarkov}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{lambda}, @var{S}, @var{C}, @var{P})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{lambda}, @var{S}, @var{C}, @var{P}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{N}, @var{S}, @var{C}, @var{P})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmarkov (@var{N}, @var{S}, @var{C}, @var{P}, @var{m})

@cindex closed network, single class
@cindex open network, single class
@cindex closed network, finite capacity
@cindex blocking queueing network
@cindex RS blocking

Compute utilization, response time, average queue length and
throughput for open or closed queueing networks with finite capacity
and a single class of requests.
Blocking type is Repetitive-Service (RS). This function explicitly
generates and solve the underlying Markov chain, and thus might
require a large amount of memory.

More specifically, networks which can me analyzed by this
function have the following properties:

@itemize @bullet

@item There exists only a single class of customers.

@item The network has @math{K} service centers. Center
@math{k \in @{1, @dots{}, K@}}
has @math{m_k > 0} servers, and has a total (finite) capacity of
@math{C_k \geq m_k} which includes both buffer space and servers.
The buffer space at service center @math{k} is therefore
@math{C_k - m_k}.

@item The network can be open, with external arrival rate to
center @math{k} equal to
@math{\lambda_k}, or closed with fixed
population size @math{N}. For closed networks, the population size
@math{N} must be strictly less than the network capacity:
@math{N < \sum_{k=1}^K C_k}.

@item Average service times are load-independent.

@item @math{P_{i, j}} is the probability that requests completing
execution at center @math{i} are transferred to
center @math{j}, @math{i \neq j}. For open networks, a request may leave the system
from any node @math{i} with probability @math{1-\sum_{j=1}^K P_{i, j}}.

@item Blocking type is Repetitive-Service (RS). Service
center @math{j} is @emph{saturated} if the number of requests is equal
to its capacity @math{C_j}. Under the RS blocking discipline,
a request completing service at center @math{i} which is being
transferred to a saturated server @math{j} is put back at the end of
the queue of @math{i} and will receive service again. Center @math{i}
then processes the next request in queue. External arrivals to a
saturated servers are dropped.

@end itemize

@strong{INPUTS}

@table @code

@item @var{lambda}(k)
@itemx @var{N}
If the first argument is a vector @var{lambda}, it is considered to be
the external arrival rate @code{@var{lambda}(k) @geq{} 0} to service center
@math{k} of an open network. If the first argument is a scalar, it is
considered as the population size @var{N} of a closed network; in this case
@var{N} must be strictly
less than the network capacity: @code{@var{N} < sum(@var{C})}.

@item @var{S}(k)
average service time at service center @math{k}

@item @var{C}(k)
capacity of service center @math{k}. The capacity includes both
the buffer and server space @code{@var{m}(k)}. Thus the buffer space is
@code{@var{C}(k)-@var{m}(k)}.

@item @var{P}(i,j)
transition probability from service center
@math{i} to service center @math{j}.

@item @var{m}(k)
number of servers at service center
@math{k}. Note that @code{@var{m}(k) @geq{} @var{C}(k)} for each @var{k}.
If @var{m} is omitted, all service centers are assumed to have a
single server (@code{@var{m}(k) = 1} for all @math{k}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
center @math{k} utilization.

@item @var{R}(k)
response time on service center @math{k}.

@item @var{Q}(k)
average number of customers in the
service center @math{k}, @emph{including} the request in service.

@item @var{X}(k)
throughput of service center @math{k}.

@end table

@strong{NOTES}

The space complexity of this implementation is @math{O(\prod_{k=1}^K (C_k + 1)^2)}. The time complexity is dominated by
the time needed to solve a linear system with @math{\prod_{k=1}^K (C_k + 1)} unknowns.

@end deftypefn


@c
@c
@c
@node Multiple Class Models
@section Multiple Class Models

@cindex multiple class queueing network
@cindex queueing network, multiple class

In multiple class queueing models, we assume that there exist @math{C}
different classes of requests. Each request from class @math{c} spends
on average time @math{S_{c, k}} in service at center @math{k}. For
open models, we denote with @math{{\bf \lambda} = \lambda_{c, k}} the
arrival rates, where @math{\lambda_{c, k}} is the external arrival
rate of class @math{c} requests at center @math{k}. For closed models,
we denote with @math{{\bf N} = \left[N_1, @dots{}, N_C\right]} the population
vector, where @math{N_c} is the number of class @math{c} requests in
the system.

The transition probability matrix for multiple class networks is a
@math{C \times K \times C \times K} matrix @math{{\bf P} = [P_{r, i,
s, j}]} where @math{P_{r, i, s, j}} is the probability that a class
@math{r} request which completes service at center @math{i} will join
server @math{j} as a class @math{s} request.

Model input and outputs can be adjusted by adding additional indexes
for the customer classes.

@noindent @strong{Model Inputs}

@cindex external arrival rate
@cindex service time
@cindex routing probability matrix
@cindex average number of visits

@table @asis

@item @math{@lambdack}
(open networks) External arrival rate of class-@math{c} requests to service center @math{k}

@item @math{@lambda}
(open networks) Overall external arrival rate to the whole system: @math{\lambda = \sum_{c=1}^C \sum_{k=1}^K \lambda_{c, k}}

@item @math{N_c}
(closed networks) Number of class @math{c} requests in the system.

@item @math{S_{c, k}}
Average service time. @math{S_{c, k}} is the average service time on
service center @math{k} for class @math{c} requests.

@item @math{P_{r, i, s, j}}
Routing probability matrix. @math{{\bf P} = [P_{r, i, s, j}]} is a @math{C
\times K \times C \times K} matrix such that @math{P_{r, i, s, j}} is
the probability that a class @math{r} request which completes service
at server @math{i} will move to server @math{j} as a class @math{s}
request.

@item @math{V_{c, k}}
Mean number of visits of class @math{c} requests to center @math{k}.

@end table

@noindent @strong{Model Outputs}

@cindex utilization
@cindex response time
@cindex average number of customers
@cindex throughput
@cindex system response time
@cindex system throughput

@table @asis

@item @math{U_{c, k}}
Utilization of service center @math{k} by class @math{c} requests. The
utilization is defined as the fraction of time in which the resource
is busy (i.e., the server is processing requests).  If center @math{k}
is a single-server or multiserver node, then 
@math{0 @leq{} U_{c, k} @leq{} 1}. 
If center @math{k} is an infinite server node (delay
center), then @math{U_{c, k}} denotes the @emph{traffic intensity} and
is defined as @math{U_{c, k} = X_{c, k} S_{c, k}}; in this case the
utilization may be greater than one.

@item @math{R_{c, k}}
Average response time experienced by class @math{c} requests on service
center @math{k}. The average response time is defined as the average
time between the arrival of a customer in the queue, and the completion
of service.

@item @math{Q_{c, k}}
Average number of class @math{c} requests on service center
@math{k}. This includes both the requests in the queue, and the request
being served.

@item @math{X_{c, k}}
Throughput of service center @math{k} for class @math{c} requests.  The
throughput is defined as the rate of completion of class @math{c}
requests.

@end table

@noindent It is possible to define aggregate performance measures as follows:

@table @math

@item U_k
Utilization of service center @math{k}:
@iftex
@tex
$U_k = \sum_{c=1}^C U_{c, k}$
@end tex
@end iftex
@ifnottex
@code{Uk = sum(U,k);}
@end ifnottex

@item R_c
System response time for class @math{c} requests:
@iftex
@tex
$R_c = \sum_{k=1}^K R_{c, k} V_{c, k}$
@end tex
@end iftex
@ifnottex
@code{Rc = sum( V.*R, 1 );}
@end ifnottex

@item Q_c
Average number of class @math{c} requests in the system:
@iftex
@tex
$Q_c = \sum_{k=1}^K Q_{c, k}$
@end tex
@end iftex
@ifnottex
@code{Qc = sum( Q, 2 );}
@end ifnottex

@item X_c
Class @math{c} throughput:
@iftex
@tex
$X_c = X_{c, k} / V_{c, k}$ for any @math{k} for which @math{V_{c,k} \neq 0}
@end tex
@end iftex
@ifnottex
@code{X(c) = X(c,k) ./ V(c,k);} for any @math{k} for which @code{V(c,k) != 0}
@end ifnottex

@end table

For closed networks, we can define the visit ratios @math{V_{s, j}}
for class @math{s} customers at service center @math{j} as follows:

@iftex
@tex
$$\left\{\eqalign{ V_{s, j} & = \sum_{r=1}^C \sum_{i=1}^K V_{r, i} P_{r, i, s, j}, \quad s=1, \ldots, C, j=1, \ldots, K \cr
                   V_{s, r_s} & = 1, \quad s=1, \ldots, C}\right. $$
@end tex
@end iftex
@ifnottex
@group
V_sj = sum_r sum_i V_ri P_risj    s=1,...,C, j=1,...,K
V_s r_s = 1                       s=1,...,C
@end group
@end ifnottex

@noindent where @math{r_s} is the class @math{s}
reference station. Similarly to single class models, the traffic
equation for closed multiclass networks can be solved up to
multiplicative constants unless we choose one reference station for
each closed class and set its visit ratio to 1.

For open networks the traffic equations are as follows:

@iftex
@tex
$$V_{s, j} = P_{0, s, j} + \sum_{r=1}^C \sum_{i=1}^K V_{r, i} P_{r, i, s, j} \quad s=1, \ldots, C, j=1, \ldots, K$$
@end tex
@end iftex
@ifnottex
@group
V_sj = P_0sj + sum_r sum_i V_ri P_risj  s=1,...,C, j=1,...,K
@end group
@end ifnottex

@noindent where @math{P_{0, s, j}} is the probability that an external
arrival goes to service center @math{j} as a class-@math{s} request.
If @math{\lambda_{s, j}} is the external arrival rate of class
@math{s} requests to service center @math{j}, and @math{\lambda =
\sum_s \sum_j \lambda_{s, j}} is the overall external arrival rate,
then @math{P_{0, s, j} = \lambda_{s, j} / \lambda}.

@anchor{doc-qncmvisits}


@deftypefn {Function File} {[@var{V} @var{ch}] =} qncmvisits (@var{P})
@deftypefnx {Function File} {[@var{V} @var{ch}] =} qncmvisits (@var{P}, @var{r})

Compute the average number of visits for the nodes of a closed multiclass network with @math{K} service centers and @math{C} customer classes.

@strong{INPUTS}

@table @code

@item @var{P}(r,i,s,j)
probability that a
class @math{r} request which completed service at center @math{i} is
routed to center @math{j} as a class @math{s} request. Class switching
is allowed.

@item @var{r}(c)
index of class @math{c} reference station,
@math{r(c) \in @{1, @dots{}, K@}}, @math{1 @leq{} c @leq{} C}.
The class @math{c} visit count to server @code{@var{r}(c)}
(@code{@var{V}(c,r(c))}) is conventionally set to 1. The reference
station serves two purposes: (i) its throughput is assumed to be the
system throughput, and (ii) a job returning to the reference station
is assumed to have completed one cycle. Default is to consider
station 1 as the reference station for all classes.

@end table

@strong{OUTPUTS}

@table @code

@item @var{V}(c,i)
number of visits of class @math{c} requests at center @math{i}.

@item @var{ch}(c)
chain number that class @math{c} belongs
to. Different classes can belong to the same chain. Chains are
numbered sequentially starting from 1 (@math{1, 2, @dots{}}). The
total number of chains is @code{max(@var{ch})}.

@end table

@end deftypefn


@anchor{doc-qnomvisits}


@deftypefn {Function File} {@var{V} =} qnomvisits (@var{P}, @var{lambda})

Compute the visit ratios to the service centers of an open multiclass network with @math{K} service centers and @math{C} customer classes.

@strong{INPUTS}

@table @code

@item @var{P}(r,i,s,j)
probability that a class @math{r} request which completed service at center @math{i} is
routed to center @math{j} as a class @math{s} request. Class switching
is supported.

@item @var{lambda}(r,i)
external arrival rate of class @math{r} requests to center @math{i}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{V}(r,i)
visit ratio of class @math{r} requests at center @math{i}.

@end table

@end deftypefn


@c
@c Open Networks
@c
@subsection Open Networks

@c
@c Open network with multiple classes
@c
@anchor{doc-qnom}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnom (@var{lambda}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnom (@var{lambda}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnom (@var{lambda}, @var{S}, @var{P})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnom (@var{lambda}, @var{S}, @var{P}, @var{m})

@cindex open network, multiple classes
@cindex multiclass network, open

Exact analysis of open, multiple-class BCMP networks. The network can
be made of @emph{single-server} queueing centers (FCFS, LCFS-PR or
PS) or delay centers (IS). This function assumes a network with
@math{K} service centers and @math{C} customer classes.

@strong{INPUTS}

@table @code

@item @var{lambda}(c)
If this function is invoked as @code{qnom(lambda, S, V, @dots{})},
then @code{@var{lambda}(c)} is the external arrival rate of class
@math{c} customers (@code{@var{lambda}(c) @geq{} 0}). If this
function is invoked as @code{qnom(lambda, S, P, @dots{})}, then
@code{@var{lambda}(c,k)} is the external arrival rate of class
@math{c} customers at center @math{k} (@code{@var{lambda}(c,k)
@geq{} 0}).

@item @var{S}(c,k)
mean service time of class @math{c} customers on the service center
@math{k} (@code{@var{S}(c,k)>0}). For FCFS nodes, mean service
times must be class-independent.

@item @var{V}(c,k)
visit ratio of class @math{c} customers to service center @math{k}
(@code{@var{V}(c,k) @geq{} 0 }). @strong{If you pass this argument,
class switching is not allowed}

@item @var{P}(r,i,s,j)
probability that a class @math{r} job completing service at center
@math{i} is routed to center @math{j} as a class @math{s} job.
@strong{If you pass argument @var{P}, class switching is allowed};
however, all servers must be fixed-rate or infinite-server nodes
(@code{@var{m}(k) @leq{} 1} for all @math{k}).

@item @var{m}(k)
number of servers at center @math{k}. If @code{@var{m}(k) < 1},
enter @math{k} is a delay center (IS); otherwise it is a regular
queueing center with @code{@var{m}(k)} servers. Default is
@code{@var{m}(k) = 1} for all @math{k}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(c,k)
If @math{k} is a queueing center, then @code{@var{U}(c,k)} is the
class @math{c} utilization of center @math{k}. If @math{k} is an IS
node, then @code{@var{U}(c,k)} is the class @math{c} @emph{traffic
intensity} defined as @code{@var{X}(c,k)*@var{S}(c,k)}.

@item @var{R}(c,k)
class @math{c} response time at center @math{k}. The system
response time for class @math{c} requests can be computed as
@code{dot(@var{R}, @var{V}, 2)}.

@item @var{Q}(c,k)
average number of class @math{c} requests at center @math{k}. The
average number of class @math{c} requests in the system @var{Qc}
can be computed as @code{Qc = sum(@var{Q}, 2)}

@item @var{X}(c,k)
class @math{c} throughput at center @math{k}.

@end table

@strong{NOTES}

If the function call specifies the visit ratios @var{V},
class switching is @strong{not} allowed. If the function call
specifies the routing probability matrix @var{P}, then class
switching @strong{is} allowed; however, all nodes are
restricted to be fixed rate servers or delay centers:
multiple-server and general load-dependent centers are not
supported. Note that the meaning of parameter @var{lambda} is
different from one case to the other (see below).

@strong{REFERENCES}

@itemize
@item
Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik, @cite{Quantitative System Performance: Computer System
Analysis Using Queueing Network Models}, Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 7.4.1 ("Open Model Solution Techniques").
@end itemize

@xseealso{qnopen,qnos,qnomvisits}

@end deftypefn


@c
@c Closed Networks
@c
@subsection Closed Networks

@c
@anchor{doc-qncmpopmix}


@deftypefn {Function File} {pop_mix =} qncmpopmix (@var{k}, @var{N})

@cindex population mix
@cindex closed network, multiple classes

Return the set of population mixes for a closed multiclass queueing
network with exactly @var{k} customers. Specifically, given a
closed multiclass QN with @math{C} customer classes, where there
are @code{@var{N}(c)} class @math{c} requests, @math{c = 1, @dots{}, C}
a @math{k}-mix @math{M} is a vector of length @math{C} with the following
properties:

@itemize
@item @math{0 @leq{} M_c @leq{} @var{N}(c)} for all @math{c = 1, @dots{}, C};
@item @math{\sum_{c=1}^C M_c = k}
@end itemize

In other words, a @math{k}-mix is an allocation of @math{k}
requests to @math{C} classes such that the number of requests
assigned to class @math{c} does not exceed the maximum value
@code{@var{N}(c)}.

@var{pop_mix} is a matrix with @math{C} columns, such
that each row represents a valid mix.

@strong{INPUTS}

@table @code

@item @var{k}
Size of the requested mix (scalar, @code{@var{k} @geq{} 0}).

@item @var{N}(c)
number of class @math{c} requests (@code{@var{k} @leq{} sum(@var{N})}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{pop_mix}(i,c)
number of class @math{c} requests in the @math{i}-th population
mix. The number of mixes is @code{rows(@var{pop_mix})}.

@end table

If you are interested in the number of @math{k}-mixes only, you can
use the funcion @code{qnmvapop}.

@strong{REFERENCES}

@itemize
@item
Herb Schwetman, @cite{Implementing the Mean Value Algorithm for the
Solution of Queueing Network Models}, Technical Report
@uref{http://docs.lib.purdue.edu/cstech/286/, 80-355}, Department of Computer
Sciences, Purdue University, revised February 15, 1982.
@end itemize

The slightly different problem of enumerating all tuples @math{k_1,
@dots{}, k_N} such that @math{\sum_i k_i = k} and @math{k_i
@geq{} 0}, for a given @math{k @geq{} 0} has been described in
S. Santini, @cite{Computing the Indices for a Complex Summation},
unpublished report, available at
@url{http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf}

@xseealso{qncmnpop}

@end deftypefn


@noindent @strong{EXAMPLE}

Let us consider a multiclass network with @math{C=2} customer classes;
the maximum number of class 1 requests is 2, and the maximum number of
class 2 requests is 3. How is it possible to allocate 3 requests to
the two classes so that the maximum number of requests per class is
not exceeded?

@example
@verbatim
 N = [2 3];
 mix = qncmpopmix(3, N)
@end verbatim
@print{} mix = [ [2 1] [1 2] [0 3] ]
@end example


@c
@anchor{doc-qncmnpop}


@deftypefn {Function File} {@var{H} =} qncmnpop (@var{N})

@cindex population mix
@cindex closed network, multiple classes

Given a network with @math{C} customer classes, this function
computes the number of @math{k}-mixes @code{@var{H}(r,k)} that can
be constructed by the multiclass MVA algorithm by allocating
@math{k} customers to the first @math{r} classes.
@xref{doc-qncmpopmix} for the definition of @math{k}-mix.

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class-@math{c} requests in the system. The total number
of requests in the network is @code{sum(@var{N})}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{H}(r,k)
is the number of @math{k} mixes that can be constructed allocating
@math{k} customers to the first @math{r} classes.

@end table

@strong{REFERENCES}

@itemize
@item Zahorjan, J. and Wong, E. @cite{The solution of separable queueing
network models using mean value analysis}. SIGMETRICS
Perform. Eval. Rev. 10, 3 (Sep. 1981), 80-85. DOI
@uref{http://doi.acm.org/10.1145/1010629.805477, 10.1145/1010629.805477}
@end itemize

@xseealso{qncmmva,qncmpopmix}

@end deftypefn



@c
@c MVA for multiple class, closed networks
@c
@anchor{doc-qncmmva}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S} )
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P}, @var{r})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P}, @var{r}, @var{m})

@cindex Mean Value Analysys (MVA)
@cindex closed network, multiple classes
@cindex multiclass network, closed

Compute steady-state performance measures for closed, multiclass
queueing networks using the Mean Value Analysys (MVA) algorithm.

Queueing policies at service centers can be any of the following:

@table @strong

@item FCFS
(First-Come-First-Served) customers are served in order of arrival;
multiple servers are allowed. For this kind of queueing discipline,
average service times must be class-independent.

@item PS
(Processor Sharing) customers are served in parallel by a single
server, each customer receiving an equal share of the service rate.

@item LCFS-PR
(Last-Come-First-Served, Preemptive Resume) customers are served in
reverse order of arrival by a single server and the last arrival
preempts the customer in service who will later resume service at the
point of interruption.

@item IS
(Infinite Server) customers are delayed independently of other
customers at the service center (there is effectively an infinite
number of servers).

@end table

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class @math{c} requests; @code{@var{N}(c) @geq{} 0}. If
class @math{c} has no requests (@code{@var{N}(c) == 0}), then for
all @var{k}, this function returns
@code{@var{U}(c,k) = @var{R}(c,k) = @var{Q}(c,k) = @var{X}(c,k) = 0}

@item @var{S}(c,k)
mean service time for class @math{c} requests at center @math{k}
(@code{@var{S}(c,k) @geq{} 0}). If the service time at center
@math{k} is class-dependent, then center @math{k} is assumed
to be of type @math{-/G/1}--PS (Processor Sharing). If center
@math{k} is a FCFS node (@code{@var{m}(k)>1}), then the service
times @strong{must} be class-independent, i.e., all classes
@strong{must} have the same service time.

@item @var{V}(c,k)
average number of visits of class @math{c} requests at
center @math{k}; @code{@var{V}(c,k) @geq{} 0}, default is 1.
@strong{If you pass this argument, class switching is not allowed}

@item @var{P}(r,i,s,j)
probability that a class @math{r} request completing service at center
@math{i} is routed to center @math{j} as a class @math{s} request; the
reference stations for each class are specified with the paramter
@var{r}. @strong{If you pass argument @var{P}, class switching is
allowed}; however, you can not specify any external delay (i.e.,
@var{Z} must be zero) and all servers must be fixed-rate or
infinite-server nodes (@code{@var{m}(k) @leq{} 1} for all
@math{k}).

@item @var{r}(c)
reference station for class @math{c}. If omitted, station 1 is the
reference station for all classes. See @command{qncmvisits}.

@item @var{m}(k)
If @code{@var{m}(k)<1}, then center @math{k} is assumed to be a delay
center (IS node @math{-/G/\infty}). If @code{@var{m}(k)==1}, then
service center @math{k} is a regular queueing center
(@math{M/M/1}--FCFS, @math{-/G/1}--LCFS-PR or @math{-/G/1}--PS).
Finally, if @code{@var{m}(k)>1}, center @math{k} is a
@math{M/M/m}--FCFS center with @code{@var{m}(k)} identical servers.
Default is @code{@var{m}(k)=1} for each @math{k}.

@item @var{Z}(c)
class @math{c} external delay (think time); @code{@var{Z}(c) @geq{}
0}. Default is 0. This parameter can not be used if you pass a
routing matrix as the second parameter of @code{qncmmva}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(c,k)
If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) @geq{}
1}), then @code{@var{U}(c,k)} is the class @math{c} utilization at
center @math{k}, @math{0 @leq{} U(c,k) @leq{} 1}. If @math{k} is an
IS node, then @code{@var{U}(c,k)} is the class @math{c} @emph{traffic
intensity} at center @math{k}, defined as @code{@var{U}(c,k) =
@var{X}(c,k)*@var{S}(c,k)}. In this case the value of
@code{@var{U}(c,k)} may be greater than one.

@item @var{R}(c,k)
class @math{c} response time at center @math{k}. The class @math{c}
@emph{residence time} at center @math{k} is @code{@var{R}(c,k) *
@var{C}(c,k)}. The total class @math{c} system response time is
@code{dot(@var{R}, @var{V}, 2)}.

@item @var{Q}(c,k)
average number of class @math{c} requests at center @math{k}. The
total number of requests at center @math{k} is
@code{sum(@var{Q}(:,k))}. The total number of class @math{c}
requests in the system is @code{sum(@var{Q}(c,:))}.

@item @var{X}(c,k)
class @math{c} throughput at center @math{k}. The class @math{c}
throughput can be computed as @code{@var{X}(c,1) / @var{V}(c,1)}.

@end table

@strong{NOTES}

If the function call specifies the visit ratios @var{V}, then class
switching is @strong{not} allowed. If the function call specifies
the routing probability matrix @var{P}, then class switching
@strong{is} allowed; however, in this case all nodes are restricted
to be fixed rate servers or delay centers: multiple-server and
general load-dependent centers are not supported.

In presence of load-dependent servers (e.g., if @code{@var{m}(i)>1}
for some @math{i}), the MVA algorithm is known to be numerically
unstable. Generally this problem shows up as negative values for the
computed response times or utilizations. This is not a problem with the
@code{queueing} package, but with the MVA algorithm;
as such, there is no known workaround at the moment (aoart from using a
different solution technique, if available). This function prints a
warning if it detects numerical problems; you can disable the warning
with the command @code{warning("off", "qn:numerical-instability")}.

Given a network with @math{K} service centers, @math{C} job classes
and population vector @math{{\bf N}=\left[N_1, @dots{}, N_C\right]}, the MVA
algorithm requires space @math{O(C \prod_i (N_i + 1))}. The time
complexity is @math{O(CK\prod_i (N_i + 1))}. This implementation is
slightly more space-efficient (see details in the code). While the
space requirement can be mitigated by using some optimizations, the
time complexity can not. If you need to analyze large closed networks
you should consider the @command{qncmmvaap} function, which implements
the approximate MVA algorithm. Note however that @command{qncmmvaap}
will only provide approximate results.

@strong{REFERENCES}

@itemize
@item
M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2, April
1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
@end itemize

This implementation is based on G. Bolch, S. Greiner, H. de Meer and
K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science Applications}, Wiley,
1998 and Edward D. Lazowska, John Zahorjan, G. Scott Graham, and
Kenneth C. Sevcik, @cite{Quantitative System Performance: Computer
System Analysis Using Queueing Network Models}, Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 7.4.2.1 ("Exact Solution Techniques").

@xseealso{qnclosed, qncmmvaapprox, qncmvisits}

@end deftypefn



@c
@c Approximate MVA, with Bard-Schweitzer approximation
@c
@anchor{doc-qncmmvabs}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmvabs (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmvabs (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmvabs (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmvabs (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmvabs (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z}, @var{tol}, @var{iter_max})

@cindex Mean Value Analysys (MVA), approximate
@cindex MVA, approximate
@cindex closed network, multiple classes
@cindex multiclass network, closed

Approximate Mean Value Analysis (MVA) for closed, multiclass
queueing networks with @math{K} service centers and @math{C}
customer classes.

This implementation uses Bard and Schweitzer approximation. It is
based on the assumption that the queue length at service center
@math{k} with population set @math{{\bf N}-{\bf 1}_c} is
approximated with

@tex
$$Q_k({\bf N}-{\bf 1}_c) \approx {n-1 \over n} Q_k({\bf N})$$
@end tex
@ifnottex
@example
@group
Q_k(N-1c) ~ (n-1)/n Q_k(N)
@end group
@end example
@end ifnottex

where @math{\bf N} is a valid population mix, @math{{\bf N}-{\bf 1}_c}
is the population mix @math{\bf N} with one class @math{c} customer
removed, and @math{n = \sum_c N_c} is the total number of requests.

This implementation works for networks with infinite server (IS)
and single-server nodes only.

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class @math{c} requests in the system (@code{@var{N}(c) @geq{} 0}).

@item @var{S}(c,k)
mean service time for class @math{c} customers at center @math{k}
(@code{@var{S}(c,k) @geq{} 0}).

@item @var{V}(c,k)
average number of visits of class @math{c} requests to center
@math{k} (@code{@var{V}(c,k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. If @code{@var{m}(k) < 1},
then the service center @math{k} is assumed to be a delay center
(IS). If @code{@var{m}(k) == 1}, service center @math{k} is a
regular queueing center (FCFS, LCFS-PR or PS) with a single server
node. If omitted, each service center has a single server. Note
that multiple server nodes are not supported.

@item @var{Z}(c)
class @math{c} external delay (@code{@var{Z} @geq{} 0}). Default is 0.

@item @var{tol}
Stopping tolerance (@code{@var{tol}>0}). The algorithm stops if
the queue length computed on two subsequent iterations are less than
@var{tol}. Default is @math{10^{-5}}.

@item @var{iter_max}
Maximum number of iterations (@code{@var{iter_max}>0}.
The function aborts if convergenge is not reached within the maximum
number of iterations. Default is 100.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(c,k)
If @math{k} is a FCFS, LCFS-PR or PS node, then @code{@var{U}(c,k)}
is the utilization of class @math{c} requests on service center
@math{k}. If @math{k} is an IS node, then @code{@var{U}(c,k)} is the
class @math{c} @emph{traffic intensity} at device @math{k},
defined as @code{@var{U}(c,k) = @var{X}(c)*@var{S}(c,k)}

@item @var{R}(c,k)
response time of class @math{c} requests at service center @math{k}.

@item @var{Q}(c,k)
average number of class @math{c} requests at service center @math{k}.

@item @var{X}(c,k)
class @math{c} throughput at service center @math{k}.

@end table

@strong{REFERENCES}

@itemize
@item
Y. Bard, @cite{Some Extensions to Multiclass Queueing Network Analysis},
proc. 4th Int. Symp. on Modelling and Performance Evaluation of
Computer Systems, Feb 1979, pp. 51--62.

@item
P. Schweitzer, @cite{Approximate Analysis of Multiclass Closed
Networks of Queues}, Proc. Int. Conf. on Stochastic Control and
Optimization, jun 1979, pp. 25--29.
@end itemize

This implementation is based on Edward D. Lazowska, John Zahorjan, G.
Scott Graham, and Kenneth C. Sevcik, @cite{Quantitative System
Performance: Computer System Analysis Using Queueing Network Models},
Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}.  In
particular, see section 7.4.2.2 ("Approximate Solution
Techniques"). This implementation is slightly different from the one
described above, as it computes the average response times @math{R}
instead of the residence times.

@xseealso{qncmmva}

@end deftypefn


@c
@c Mixed networks
@c
@subsection Mixed Networks

@c
@c MVA for mixed networks
@c
@anchor{doc-qnmix}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnmix (@var{lambda}, @var{N}, @var{S}, @var{V}, @var{m})

@cindex Mean Value Analysys (MVA)
@cindex mixed network

Mean Value Analysis for mixed queueing networks. The network
consists of @math{K} service centers (single-server or delay
centers) and @math{C} independent customer chains. Both open and
closed chains are possible. @var{lambda} is the vector of per-chain
arrival rates (open classes); @var{N} is the vector of populations
for closed chains.

Class switching is @strong{not} allowed. Each customer class
@emph{must} correspond to an independent chain.

If the network is made of open or closed classes only, then this
function calls @code{qnom} or @code{qncmmva} respectively, and
prints a warning message.

@strong{INPUTS}

@table @code

@item @var{lambda}(c)
@itemx @var{N}(c)
For each customer chain @math{c}:

@itemize

@item if @math{c} is a closed chain, then @code{@var{N}(c)>0} is the
number of class @math{c} requests and @code{@var{lambda}(c)} must be
zero;

@item If @math{c} is an open chain,
@code{@var{lambda}(c)>0} is the arrival rate of class @math{c}
requests and @code{@var{N}(c)} must be zero;

@end itemize

@noindent In other words, for each class @math{c} the following must hold:

@example
(@var{lambda}(c)>0 && @var{N}(c)==0) || (@var{lambda}(c)==0 && @var{N}(c)>0)
@end example

@item @var{S}(c,k)
mean class @math{c} service time at center @math{k},
@code{@var{S}(c,k) @geq{} 0}. For FCFS nodes, service times must be
class-independent.

@item @var{V}(c,k)
average number of visits of class @math{c} customers to center
@math{k} (@code{@var{V}(c,k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. Only single-server
(@code{@var{m}(k)==1}) or IS (Infinite Server) nodes
(@code{@var{m}(k)<1}) are supported. If omitted, each center is
assumed to be of type @math{M/M/1}-FCFS. Queueing discipline for
single-server nodes can be FCFS, PS or LCFS-PR.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(c,k)
class @math{c} utilization at center @math{k}.

@item @var{R}(c,k)
class @math{c} response time at center @math{k}.

@item @var{Q}(c,k)
average number of class @math{c} requests at center @math{k}.

@item @var{X}(c,k)
class @math{c} throughput at center @math{k}.

@end table

@strong{REFERENCES}

@itemize
@item
Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik, @cite{Quantitative System Performance: Computer System
Analysis Using Queueing Network Models}, Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 7.4.3 ("Mixed Model Solution Techniques").
Note that in this function we compute the mean response time @math{R}
instead of the mean residence time as in the reference.

@item
Herb Schwetman, @cite{Implementing the Mean Value Algorithm for the
Solution of Queueing Network Models}, Technical Report
@uref{http://docs.lib.purdue.edu/cstech/286/, CSD-TR-355}, Department
of Computer Sciences, Purdue University, revised Feb 15, 1982.
@end itemize

@xseealso{qncmmva, qncm}

@end deftypefn


@c
@c
@c
@node Generic Algorithms
@section Generic Algorithms

The @code{queueing} package provides a high-level function
@command{qnsolve} for analyzing QN models. @command{qnsolve} takes as
input a high-level description of the queueing model, and delegates
the actual solution of the model to one of the lower-level
function. @command{qnsolve} supports single or multiclass models, but at
the moment only product-form networks can be analyzed. For non
product-form networks @xref{Non Product-Form QNs}.

@command{qnsolve} accepts two input parameters. The first one is the list
of nodes, encoded as an Octave @emph{cell array}. The second parameter
is the vector of visit ratios @var{V}, which can be either a vector
(for single-class models) or a two-dimensional matrix (for
multiple-class models).

Individual nodes in the network are structures build using the
@command{qnmknode} function.

@anchor{doc-qnmknode}


@deftypefn {Function File} {@var{Q} =} qnmknode (@var{"m/m/m-fcfs"}, @var{S})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"m/m/m-fcfs"}, @var{S}, @var{m})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"m/m/1-lcfs-pr"}, @var{S})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"-/g/1-ps"}, @var{S})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"-/g/1-ps"}, @var{S}, @var{s2})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"-/g/inf"}, @var{S})
@deftypefnx {Function File} {@var{Q} =} qnmknode (@var{"-/g/inf"}, @var{S}, @var{s2})

Creates a node; this function can be used together with
@code{qnsolve}. It is possible to create either single-class nodes
(where there is only one customer class), or multiple-class nodes
(where the service time is given per-class). Furthermore, it is
possible to specify load-dependent service times. String literals
are case-insensitive, so for example @var{"-/g/inf"}, @var{"-/G/inf"}
and @var{"-/g/INF"} are all equivalent.

@strong{INPUTS}

@table @code

@item @var{S}
Mean service time.

@itemize

@item If @math{S} is a scalar,
it is assumed to be a load-independent, class-independent service time.

@item If @math{S} is a column vector, then @code{@var{S}(c)} is assumed to
the the load-independent service time for class @math{c} customers.

@item If @math{S} is a row vector, then @code{@var{S}(n)} is assumed to be
the class-independent service time at the node, when there are @math{n}
requests.

@item Finally, if @var{S} is a two-dimensional matrix, then
@code{@var{S}(c,n)} is assumed to be the class @math{c} service time
when there are @math{n} requests at the node.

@end itemize

@item @var{m}
Number of identical servers at the node. Default is @code{@var{m}=1}.

@item @var{s2}
Squared coefficient of variation for the service time. Default is 1.0.

@end table

The returned struct @var{Q} should be considered opaque to the client.

@c The returned struct @var{Q} has the following fields:

@c @table @var

@c @item Q.node
@c (String) type of the node; valid values are @code{"m/m/m-fcfs"},
@c @code{"-/g/1-lcfs-pr"}, @code{"-/g/1-ps"} (Processor-Sharing)
@c and @code{"-/g/inf"} (Infinite Server, or delay center).

@c @item Q.S
@c Average service time. If @code{@var{Q}.S} is a vector, then
@c @code{@var{Q}.S(i)} is the average service time at that node
@c if there are @math{i} requests.

@c @item Q.m
@c Number of identical servers at a @code{"m/m/m-fcfs"}. Default is 1.

@c @item Q.c
@c Number of customer classes. Default is 1.

@c @end table

@xseealso{qnsolve}

@end deftypefn


After the network has been defined, it is possible to solve it using
@command{qnsolve}.

@anchor{doc-qnsolve}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"closed"}, @var{N}, @var{QQ}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"closed"}, @var{N}, @var{QQ}, @var{V}, @var{Z})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"open"}, @var{lambda}, @var{QQ}, @var{V})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"mixed"}, @var{lambda}, @var{N}, @var{QQ}, @var{V})

High-level function for analyzing QN models.

@itemize

@item For @strong{closed} networks, the following server types are
supported: @math{M/M/m}--FCFS, @math{-/G/\infty}, @math{-/G/1}--LCFS-PR,
@math{-/G/1}--PS and load-dependent variants.

@item For @strong{open} networks, the following server types are supported:
@math{M/M/m}--FCFS, @math{-/G/\infty} and @math{-/G/1}--PS. General
load-dependent nodes are @emph{not} supported. Multiclass open networks
do not support multiple server @math{M/M/m} nodes, but only
single server @math{M/M/1}--FCFS.

@item For @strong{mixed} networks, the following server types are supported:
@math{M/M/1}--FCFS, @math{-/G/\infty} and @math{-/G/1}--PS. General
load-dependent nodes are @emph{not} supported.

@end itemize

@strong{INPUTS}

@table @code

@item @var{N}
@itemx @var{N}(c)
Number of requests in the system for closed networks. For
single-class networks, @var{N} must be a scalar. For multiclass
networks, @code{@var{N}(c)} is the population size of closed class
@math{c}.

@item @var{lambda}
@itemx @var{lambda}(c)
External arrival rate (scalar) for open networks. For single-class
networks, @var{lambda} must be a scalar. For multiclass networks,
@code{@var{lambda}(c)} is the class @math{c} overall arrival rate.

@item @var{QQ}@{i@}
List of queues in the network. This must be a cell array
with @math{N} elements, such that @code{@var{QQ}@{i@}} is
a struct produced by the @code{qnmknode} function.

@item @var{Z}
External delay ("think time") for closed networks. Default 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}(k)
If @math{k} is a FCFS node, then @code{@var{U}(k)} is the utilization
of service center @math{k}. If @math{k} is an IS node, then
@code{@var{U}(k)} is the @emph{traffic intensity} defined as
@code{@var{X}(k)*@var{S}(k)}.

@item @var{R}(k)
average response time of service center @math{k}.

@item @var{Q}(k)
average number of customers in service center @math{k}.

@item @var{X}(k)
throughput of service center @math{k}.

@end table

Note that for multiclass networks, the computed results are per-class
utilization, response time, number of customers and throughput:
@code{@var{U}(c,k)}, @code{@var{R}(c,k)}, @code{@var{Q}(c,k)},
@code{@var{X}(c,k)}.

String literals are case-insensitive, so @var{"closed"}, @var{"Closed"}
and @var{"CLoSEd"} are all equivalent.

@end deftypefn


@noindent @strong{EXAMPLE}

Let us consider a closed, multiclass network with @math{C=2} classes
and @math{K=3} service center. Let the population be @math{M=(2, 1)}
(class 1 has 2 requests, and class 2 has 1 request). The nodes are as
follows:

@itemize

@item Node 1 is a @math{M/M/1}--FCFS node, with load-dependent service
times. Service times are class-independent, and are defined by the
matrix @code{[0.2 0.1 0.1; 0.2 0.1 0.1]}. Thus, @code{@var{S}(1,2) =
0.2} means that service time for class 1 customers where there are 2
requests in 0.2. Note that service times are class-independent;

@item Node 2 is a @math{-/G/1}--PS node, with service times
@math{S_{1, 2} = 0.4} for class 1, and @math{S_{2, 2} = 0.6} for class 2
requests;

@item Node 3 is a @math{-/G/\infty} node (delay center), with service
times @math{S_{1, 3}=1} and @math{S_{2, 3}=2} for class 1 and 2
respectively.

@end itemize

After defining the per-class visit count @var{V} such that
@code{@var{V}(c,k)} is the visit count of class @math{c} requests to
service center @math{k}.  We can define and solve the model as
follows:

@example


@verbatim
 QQ = { qnmknode( "m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1] ), ...
        qnmknode( "-/g/1-ps", [0.4; 0.6] ), ...
        qnmknode( "-/g/inf", [1; 2] ) };
 V = [ 1 0.6 0.4; ...
       1 0.3 0.7 ];
 N = [ 2 1 ];
 [U R Q X] = qnsolve( "closed", N, QQ, V );
@end verbatim
@end example

@anchor{doc-qnclosed}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnclosed (@var{N}, @var{S}, @var{V}, @dots{})

@cindex closed network, single class
@cindex closed network, multiple classes

This function computes steady-state performance measures of closed
queueing networks using the Mean Value Analysis (MVA) algorithm. The
qneneing network is allowed to contain fixed-capacity centers, delay
centers or general load-dependent centers. Multiple request
classes are supported.

This function dispatches the computation to one of
@code{qncsemva}, @code{qncsmvald} or @code{qncmmva}.

@itemize

@item If @var{N} is a scalar, the network is assumed to have a single
class of requests; in this case, the exact MVA algorithm is used to
analyze the network. If @var{S} is a vector, then @code{@var{S}(k)}
is the average service time of center @math{k}, and this function
calls @code{qncsmva} which supports load-independent
service centers. If @var{S} is a matrix, @code{@var{S}(k,i)} is the
average service time at center @math{k} when @math{i=1, @dots{}, N}
jobs are present; in this case, the network is analyzed with the
@code{qncmmvald} function.

@item If @var{N} is a vector, the network is assumed to have multiple
classes of requests, and is analyzed using the exact multiclass
MVA algorithm as implemented in the @code{qncmmva} function.

@end itemize

@xseealso{qncsmva, qncsmvald, qncmmva}

@end deftypefn


@noindent @strong{EXAMPLE}

@example
@verbatim
 P = [0 0.3 0.7; 1 0 0; 1 0 0]; # Transition probability matrix
 S = [1 0.6 0.2];               # Average service times
 m = ones(size(S));             # All centers are single-server
 Z = 2;                         # External delay
 N = 15;                        # Maximum population to consider
 V = qncsvisits(P);             # Compute number of visits
 X_bsb_lower = X_bsb_upper = X_ab_lower = X_ab_upper = X_mva = zeros(1,N);
 for n=1:N
   [X_bsb_lower(n) X_bsb_upper(n)] = qncsbsb(n, S, V, m, Z);
   [X_ab_lower(n) X_ab_upper(n)] = qncsaba(n, S, V, m, Z);
   [U R Q X] = qnclosed( n, S, V, m, Z );
   X_mva(n) = X(1)/V(1);
 endfor
 close all;
 plot(1:N, X_ab_lower,"g;Asymptotic Bounds;", ...
      1:N, X_bsb_lower,"k;Balanced System Bounds;", ...
      1:N, X_mva,"b;MVA;", "linewidth", 2, ...
      1:N, X_bsb_upper,"k", 1:N, X_ab_upper,"g" );
 axis([1,N,0,1]); legend("location","southeast"); legend("boxoff");
 xlabel("Number of Requests n"); ylabel("System Throughput X(n)");
@end verbatim
@end example

@anchor{doc-qnopen}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnopen (@var{lambda}, @var{S}, @var{V}, @dots{})

@cindex open network

Compute utilization, response time, average number of requests in the
system, and throughput for open queueing networks. If @var{lambda} is
a scalar, the network is considered a single-class QN and is solved
using @code{qnopensingle}. If @var{lambda} is a vector, the network
is considered as a multiclass QN and solved using @code{qnopenmulti}.

@xseealso{qnos, qnom}

@end deftypefn



@c
@c
@c
@node Bounds Analysis
@section Bounds Analysis

@c
@anchor{doc-qnosaba}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnosaba (@var{lambda}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnosaba (@var{lambda}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnosaba (@var{lambda}, @var{S}, @var{V}, @var{m})

@cindex bounds, asymptotic
@cindex open network

Compute Asymptotic Bounds for open, single-class networks with @math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate of requests (scalar, @code{@var{lambda} @geq{} 0}).

@item @var{D}(k)
service demand at center @math{k}.
(vector of length @math{K}, @code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
mean service time at center @math{k}.
(vector of length @math{K}, @code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
mean number of visits to center @math{k}.
(vector of length @math{K}, @code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}.
This function only supports @math{M/M/1} queues, therefore
@var{m} must be @code{ones(size(S))}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@item @var{Xu}
Lower and upper bounds on the system throughput. @var{Xl} is
always set to @math{0} since there can be no lower bound on the
throughput of open networks (scalar).

@item @var{Rl}
@item @var{Ru}
Lower and upper bounds on the system response time. @var{Ru}
is always set to @code{+inf} since there can be no upper bound on the
throughput of open networks (scalar).

@end table

@xseealso{qnomaba}

@end deftypefn


@c
@anchor{doc-qnomaba}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnomaba (@var{lambda}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Rl}] =} qnomaba (@var{lambda}, @var{S}, @var{V})

@cindex bounds, asymptotic
@cindex open network
@cindex multiclass network, open

Compute Asymptotic Bounds for open, multiclass networks with @math{K}
service centers and @math{C} customer classes.

@strong{INPUTS}

@table @code

@item @var{lambda}(c)
class @math{c} arrival rate to the system (vector of length
@math{C}, @code{@var{lambda}(c) > 0}).

@item @var{D}(c, k)
class @math{c} service demand at center @math{k} (@math{C \times K}
matrix, @code{@var{D}(c, k) @geq{} 0}).

@item @var{S}(c, k)
mean service time of class @math{c} requests at center @math{k}
(@math{C \times K} matrix, @code{@var{S}(c, k) @geq{} 0}).

@item @var{V}(c, k)
mean number of visits of class @math{c} requests at center @math{k}
(@math{C \times K} matrix, @code{@var{V}(c, k) @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}(c)
@item @var{Xu}(c)
lower and upper bounds of class @math{c} throughput.
@code{@var{Xl}(c)} is always @math{0} since there can be no lower
bound on the throughput of open networks (vector of length
@math{C}).

@item @var{Rl}(c)
@item @var{Ru}(c)
lower and upper bounds of class @math{c} response time.
@code{@var{Ru}(c)} is always @code{+inf} since there can be no
upper bound on the response time of open networks (vector of length
@math{C}).

@end table

@end deftypefn


@c
@anchor{doc-qncsaba}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsaba (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsaba (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsaba (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsaba (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})

@cindex bounds, asymptotic
@cindex asymptotic bounds
@cindex closed network, single class

Compute Asymptotic Bounds for the system throughput and response
time of closed, single-class networks with @math{K} service
centers.

Single-server and infinite-server nodes are supported.
Multiple-server nodes and general load-dependent servers are not
supported.

@strong{INPUTS}

@table @code

@item @var{N}
number of requests in the system (scalar, @code{@var{N}>0}).

@item @var{D}(k)
service demand at center @math{k}
(@code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
mean service time at center @math{k}
(@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
average number of visits to center
@math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}
(if @var{m} is a scalar, all centers have that number of servers). If
@code{@var{m}(k) < 1}, center @math{k} is a delay center (IS);
if @code{@var{m}(k) = 1}, center @math{k} is a M/M/1-FCFS server.
This function does not support multiple-server nodes. Default
is 1.

@item @var{Z}
External delay (scalar, @code{@var{Z} @geq{} 0}). Default is 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@itemx @var{Xu}
Lower and upper bounds on the system throughput.

@item @var{Rl}
@itemx @var{Ru}
Lower and upper bounds on the system response time.

@end table

@xseealso{qncmaba}

@end deftypefn


@c
@anchor{doc-qncmaba}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmaba (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})

@cindex bounds, asymptotic
@cindex asymptotic bounds
@cindex closed network
@cindex multiclass network, closed
@cindex closed multiclass network

Compute Asymptotic Bounds for closed, multiclass networks
with @math{K} service centers and @math{C} customer classes.
Single-server and infinite-server nodes are supported.
Multiple-server nodes and general load-dependent servers are not
supported.

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class @math{c} requests in the system
(vector of length @math{C}, @code{@var{N}(c) @geq{} 0}).

@item @var{D}(c, k)
class @math{c} service demand
at center @math{k} (@math{C \times K} matrix, @code{@var{D}(c,k) @geq{} 0}).

@item @var{S}(c, k)
mean service time of class @math{c}
requests at center @math{k} (@math{C \times K} matrix, @code{@var{S}(c,k) @geq{} 0}).

@item @var{V}(c,k)
average number of visits of class @math{c}
requests to center @math{k} (@math{C \times K} matrix, @code{@var{V}(c,k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}
(if @var{m} is a scalar, all centers have that number of servers). If
@code{@var{m}(k) < 1}, center @math{k} is a delay center (IS);
if @code{@var{m}(k) = 1}, center @math{k} is a M/M/1-FCFS server.
This function does not support multiple-server nodes. Default
is 1.

@item @var{Z}(c)
class @math{c} external delay
(vector of length @math{C}, @code{@var{Z}(c) @geq{} 0}). Default is 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}(c)
@itemx @var{Xu}(c)
Lower and upper bounds for class @math{c} throughput.

@item @var{Rl}(c)
@itemx @var{Ru}(c)
Lower and upper bounds for class @math{c} response time.

@end table

@strong{REFERENCES}

@itemize
@item
Edward D. Lazowska, John Zahorjan, G.  Scott Graham, and Kenneth
C. Sevcik, @cite{Quantitative System Performance: Computer System
Analysis Using Queueing Network Models}, Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 5.2 ("Asymptotic Bounds").
@end itemize

@xseealso{qncsaba}

@end deftypefn


@c
@anchor{doc-qnosbsb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnosbsb (@var{lambda}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qnosbsb (@var{lambda}, @var{S}, @var{V})

@cindex bounds, balanced system
@cindex open network

Compute Balanced System Bounds for single-class, open networks with
@math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{lambda}
overall arrival rate to the system (scalar, @code{@var{lambda} @geq{} 0}).

@item @var{D}(k)
service demand at center @math{k} (@code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
mean number of visits at center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. This function only supports
@math{M/M/1} queues, therefore @var{m} must be
@code{ones(size(S))}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@item @var{Xu}
Lower and upper bounds on the system throughput. @var{Xl} is always
set to @math{0}, since there can be no lower bound on open
networks throughput.

@item @var{Rl}
@itemx @var{Ru}
Lower and upper bounds on the system response time.

@end table

@xseealso{qnosaba}

@end deftypefn


@c
@anchor{doc-qncsbsb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncsbsb (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})

@cindex bounds, balanced system
@cindex closed network, single class
@cindex balanced system bounds

Compute Balanced System Bounds on system throughput and response time for closed, single-class networks with @math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{N}
number of requests in the system (scalar, @code{@var{N} @geq{} 0}).

@item @var{D}(k)
service demand at center @math{k} (@code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
mean service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
average number of visits to center @math{k} (@code{@var{V}(k)
@geq{} 0}). Default is 1.

@item @var{m}(k)
number of servers at center @math{k}. This function supports
@code{@var{m}(k) = 1} only (single-eserver FCFS nodes); this
parameter is only for compatibility with @code{qncsaba}. Default is
1.

@item @var{Z}
External delay (@code{@var{Z} @geq{} 0}). Default is 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@itemx @var{Xu}
Lower and upper bound on the system throughput.

@item @var{Rl}
@itemx @var{Ru}
Lower and upper bound on the system response time.

@end table

@strong{REFERENCES}

@itemize
@item
Edward D. Lazowska, John Zahorjan, G.  Scott Graham, and Kenneth
C. Sevcik, @cite{Quantitative System Performance: Computer System
Analysis Using Queueing Network Models}, Prentice Hall,
1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
particular, see section 5.4 ("Balanced Systems Bounds").
@end itemize

@xseealso{qncmbsb}

@end deftypefn


@c
@anchor{doc-qncmbsb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmbsb (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmbsb (@var{N}, @var{S}, @var{V})

@cindex bounds, balanced system
@cindex balanced system bounds
@cindex multiclass network, closed
@cindex closed multiclass network

Compute Balanced System Bounds for closed, multiclass networks
with @math{K} service centers and @math{C} customer classes.
Only single-server nodes are supported.

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class @math{c} requests in the system (vector of length
@math{C}).

@item @var{D}(c, k)
class @math{c} service demand  at center @math{k} (@math{C \times K}
matrix, @code{@var{D}(c,k) @geq{} 0}).

@item @var{S}(c, k)
mean service time of class @math{c}
requests at center @math{k} (@math{C \times K} matrix, @code{@var{S}(c,k) @geq{} 0}).

@item @var{V}(c,k)
average number of visits of class @math{c}
requests to center @math{k} (@math{C \times K} matrix, @code{@var{V}(c,k) @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}(c)
@itemx @var{Xu}(c)
Lower and upper class @math{c} throughput bounds (vector of length @math{C}).

@item @var{Rl}(c)
@itemx @var{Ru}(c)
Lower and upper class @math{c} response time bounds (vector of length @math{C}).

@end table

@xseealso{qncsbsb}

@end deftypefn


@c
@anchor{doc-qncmcb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmcb (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmcb (@var{N}, @var{S}, @var{V})

@cindex multiclass network, closed
@cindex closed multiclass network
@cindex bounds, composite
@cindex composite bounds

Compute Composite Bounds (CB) on system throughput and response time for closed multiclass networks.

@strong{INPUTS}

@table @code

@item @var{N}(c)
number of class @math{c} requests in the system.

@item @var{D}(c, k)
class @math{c} service demand
at center @math{k} (@code{@var{S}(c,k) @geq{} 0}).

@item @var{S}(c, k)
mean service time of class @math{c}
requests at center @math{k} (@code{@var{S}(c,k) @geq{} 0}).

@item @var{V}(c,k)
average number of visits of class @math{c}
requests to center @math{k} (@code{@var{V}(c,k) @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}(c)
@itemx @var{Xu}(c)
Lower and upper bounds on class @math{c} throughput.

@item @var{Rl}(c)
@itemx @var{Ru}(c)
Lower and upper bounds on class @math{c} response time.

@end table

@strong{REFERENCES}

@itemize
@item
Teemu Kerola, @cite{The Composite Bound Method (CBM) for Computing
Throughput Bounds in Multiple Class Environments}, Performance
Evaluation Vol. 6, Issue 1, March 1986, DOI
@uref{http://dx.doi.org/10.1016/0166-5316(86)90002-7,
10.1016/0166-5316(86)90002-7}. Also available as
@uref{http://docs.lib.purdue.edu/cstech/395/, Technical Report
CSD-TR-475}, Department of Computer Sciences, Purdue University, mar
13, 1984 (Revised Aug 27, 1984).
@end itemize

@end deftypefn


@c
@anchor{doc-qncspb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncspb (@var{N}, @var{D} )
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncspb (@var{N}, @var{S}, @var{V} )
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncspb (@var{N}, @var{S}, @var{V}, @var{m} )
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncspb (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z} )

@cindex bounds, PB
@cindex PB bounds
@cindex closed network, single class

Compute PB Bounds (C. H. Hsieh and S. Lam, 1987) for single-class,
closed networks with @math{K} service centers.

@strong{INPUTS}

@table @code

@item @var{}
number of requests in the system (scalar, @code{@var{N} > 0}).

@item @var{D}(k)
service demand of service center @math{k} (@code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
mean service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
visit ratio to center @math{k} (@code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. This function only supports
@math{M/M/1} queues, therefore @var{m} must be
@code{ones(size(S))}.

@item @var{Z}
external delay (think time, @code{@var{Z} @geq{} 0}). Default 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@itemx @var{Xu}
Lower and upper bounds on the system throughput.

@item @var{Rl}
@itemx @var{Ru}
Lower and upper bounds on the system response time.

@end table

@strong{REFERENCES}

@itemize
@item
C. H. Hsieh and S. Lam, @cite{Two classes of performance bounds for
closed queueing networks}, Performance Evaluation, Vol. 7 Issue 1,
pp. 3--30, February 1987, DOI
@uref{http://dx.doi.org/10.1016/0166-5316(87)90054-X,
10.1016/0166-5316(87)90054-X}. Also available as
@uref{ftp://ftp.cs.utexas.edu/pub/techreports/tr85-09.pdf, Technical
Report TR-85-09}, Department of Computer Science, University of Texas
at Austin, June 1985
@end itemize

This function implements the non-iterative variant described in G.
Casale, R. R. Muntz, G. Serazzi, @cite{Geometric Bounds: a
Non-Iterative Analysis Technique for Closed Queueing Networks}, IEEE
Transactions on Computers, 57(6):780-794, June 2008.

@xseealso{qncsaba, qbcsbsb, qncsgb}

@end deftypefn


@c
@anchor{doc-qncsgb}


@deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}, @var{Ql}, @var{Qu}] =} qncsgb (@var{N}, @var{D})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}, @var{Ql}, @var{Qu}] =} qncsgb (@var{N}, @var{S}, @var{V})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}, @var{Ql}, @var{Qu}] =} qncsgb (@var{N}, @var{S}, @var{V}, @var{m})
@deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}, @var{Ql}, @var{Qu}] =} qncsgb (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})

@cindex bounds, geometric
@cindex geometric bounds
@cindex closed network

Compute Geometric Bounds (GB) on system throughput, system response
time and server queue lenghts for closed, single-class networks
with @math{K} service centers and @math{N} requests.

@strong{INPUTS}

@table @code

@item @var{N}
number of requests in the system (scalar, @code{@var{N} > 0}).

@item @var{D}(k)
service demand of service center @math{k} (vector of length
@math{K}, @code{@var{D}(k) @geq{} 0}).

@item @var{S}(k)
mean service time at center @math{k} (vector of length @math{K},
@code{@var{S}(k) @geq{} 0}).

@item @var{V}(k)
visit ratio to center @math{k}
(vector of length @math{K}, @code{@var{V}(k) @geq{} 0}).

@item @var{m}(k)
number of servers at center @math{k}. This function only supports
@math{M/M/1} queues, therefore @var{m} must be
@code{ones(size(S))}.

@item @var{Z}
external delay (think time, @code{@var{Z} @geq{} 0}, scalar). Default is 0.

@end table

@strong{OUTPUTS}

@table @code

@item @var{Xl}
@itemx @var{Xu}
Lower and upper bound on the system throughput. If @code{@var{Z}>0},
these bounds are computed using @emph{Geometric Square-root Bounds}
(GSB). If @code{@var{Z}==0}, these bounds are computed using @emph{Geometric Bounds} (GB)

@item @var{Rl}
@itemx @var{Ru}
Lower and upper bound on the system response time. These bounds
are derived from @var{Xl} and @var{Xu} using Little's Law:
@code{@var{Rl} = @var{N} / @var{Xu} - @var{Z}},
@code{@var{Ru} = @var{N} / @var{Xl} - @var{Z}}

@item @var{Ql}(k)
@itemx @var{Qu}(k)
lower and upper bounds of center @math{K} queue length.

@end table

@strong{REFERENCES}

@itemize
@item
G. Casale, R. R. Muntz, G. Serazzi, @cite{Geometric Bounds: a
Non-Iterative Analysis Technique for Closed Queueing Networks}, IEEE
Transactions on Computers, 57(6):780-794, June
2008. @uref{http://doi.ieeecomputersociety.org/10.1109/TC.2008.37,
10.1109/TC.2008.37}
@end itemize

In this implementation we set @math{X^+} and @math{X^-} as the upper
and lower Asymptotic Bounds as computed by the @command{qncsab}
function, respectively.

@end deftypefn


@c
@c Examples
@c

@node QN Analysis Examples
@section QN Analysis Examples

In this section we illustrate with a few examples how the
@code{queueing} package can be used to analyze queueing network
models. Further examples can be found in the functions demo blocks,
and can be inspected with the @code{demo @emph{function}} Octave
command.

@subsection Closed, Single Class Network

Let us consider again the network shown in
@ref{fig:qn_closed_single}. We denote with @math{S_k} the average
service time at center @math{k}, @math{k=1, 2, 3}. Let the service
times be @math{S_1 = 1.0}, @math{S_2 = 2.0} and @math{S_3 = 0.8}. The
routing of jobs within the network is described with a @emph{routing
probability matrix} @math{\bf P}: a request completing service at
center @math{i} is enqueued at center @math{j} with probability
@math{P_{i, j}}.  We use the following routing matrix:

@iftex
@tex
$$
{\bf P} = \pmatrix{ 0 & 0.3 & 0.7 \cr
                    1 & 0 & 0 \cr
                    1 & 0 & 0 }
$$
@end tex
@end iftex
@ifnottex
@example
    / 0  0.3  0.7 \
P = | 1  0    0   |
    \ 1  0    0   /
@end example
@end ifnottex

The network above can be analyzed with the @command{qnclosed} function
@pxref{doc-qnclosed}. @command{qnclosed} requires the following
parameters:

@table @var

@item N
Number of requests in the network (since we are considering a closed
network, the number of requests is fixed)

@item S
Array of average service times at the centers: @code{@var{S}(k)} is
the average service time at center @math{k}.

@item V
Array of visit ratios: @code{@var{V}(k)} is the average number of
visits to center @math{k}.

@end table

We can compute @math{V_k} from the routing probability matrix
@math{P_{i, j}} using the @command{qncsvisits} function
@pxref{doc-qncsvisits}.  Therefore, we can analyze the network for a
given population size @math{N} (e.g., @math{N=10}) as follows:

@example
@group
@kbd{N = 10;}
@kbd{S = [1 2 0.8];}
@kbd{P = [0 0.3 0.7; 1 0 0; 1 0 0];}
@kbd{V = qncsvisits(P);}
@kbd{[U R Q X] = qnclosed( N, S, V )}
   @result{} U = 0.99139 0.59483 0.55518
   @result{} R = 7.4360  4.7531  1.7500
   @result{} Q = 7.3719  1.4136  1.2144
   @result{} X = 0.99139 0.29742 0.69397
@end group
@end example

The output of @command{qnclosed} includes the vectors of utilizations
@math{U_k} at center @math{k}, response time @math{R_k}, average
number of customers @math{Q_k} and throughput @math{X_k}. In our
example, the throughput of center 1 is @math{X_1 = 0.99139}, and the
average number of requests in center 3 is @math{Q_3 = 1.2144}. The
utilization of center 1 is @math{U_1 = 0.99139}, which is the highest
among the service centers. Thus, center 1 is the @emph{bottleneck
device}.

This network can also be analyzed with the @command{qnsolve} function
@pxref{doc-qnsolve}. @command{qnsolve} can handle open, closed or
mixed networks, and allows the network to be described in a very
flexible way.  First, let @var{Q1}, @var{Q2} and @var{Q3} be the
variables describing the service centers. Each variable is
instantiated with the @command{qnmknode} function.

@example
@group
@kbd{Q1 = qnmknode( "m/m/m-fcfs", 1 );}
@kbd{Q2 = qnmknode( "m/m/m-fcfs", 2 );}
@kbd{Q3 = qnmknode( "m/m/m-fcfs", 0.8 );}
@end group
@end example

The first parameter of @command{qnmknode} is a string describing the
type of the node; @code{"m/m/m-fcfs"} denotes a @math{M/M/m}--FCFS
center (this parameter is case-insensitive). The second parameter
gives the average service time. An optional third parameter can be
used to specify the number @math{m} of service centers. If omitted, it
is assumed @math{m=1} (single-server node).

Now, the network can be analyzed as follows:

@example
@group
@kbd{N = 10;}
@kbd{V = [1 0.3 0.7];}
@kbd{[U R Q X] = qnsolve( "closed", N, @{ Q1, Q2, Q3 @}, V )}
   @result{} U = 0.99139 0.59483 0.55518
   @result{} R = 7.4360  4.7531  1.7500
   @result{} Q = 7.3719  1.4136  1.2144
   @result{} X = 0.99139 0.29742 0.69397
@end group
@end example

@subsection Open, Single Class Network

Let us consider an open network with @math{K=3} service centers and
the following routing probabilities:

@iftex
@tex
$$
{\bf P} = \pmatrix{ 0 & 0.3 & 0.5 \cr
                    1 & 0 & 0 \cr
                    1 & 0 & 0 }
$$
@end tex
@end iftex
@ifnottex
@example
    / 0  0.3  0.5 \
P = ! 1  0    0   |
    \ 1  0    0   /
@end example
@end ifnottex

In this network, requests can leave the system from center 1 with
probability @math{1-(0.3+0.5) = 0.2}. We suppose that external jobs
arrive at center 1 with rate @math{\lambda_1 = 0.15}; there are no
arrivals at centers 2 and 3.

Similarly to closed networks, we first compute the visit counts
@math{V_k} to center @math{k}, @math{k = 1, 2, 3}. We use the
@command{qnosvisits} function as follows:

@example
@group
@kbd{P = [0 0.3 0.5; 1 0 0; 1 0 0];}
@kbd{lambda = [0.15 0 0];}
@kbd{V = qnosvisits(P, lambda)}
   @result{} V = 5.00000 1.50000 2.50000
@end group
@end example

@noindent where @code{@var{lambda}(k)} is the arrival rate at center @math{k},
and @math{\bf P} is the routing matrix. Assuming the same service times as
in the previous example, the network can be analyzed with the
@command{qnopen} function @pxref{doc-qnopen}, as follows:

@example
@group
@kbd{S = [1 2 0.8];}
@kbd{[U R Q X] = qnopen( sum(lambda), S, V )}
   @result{} U = 0.75000 0.45000 0.30000
   @result{} R = 4.0000  3.6364  1.1429
   @result{} Q = 3.00000 0.81818 0.42857
   @result{} X = 0.75000 0.22500 0.37500
@end group
@end example

The first parameter of the @command{qnopen} function is the (scalar)
aggregate arrival rate.

Again, it is possible to use the @command{qnsolve} high-level function:

@example
@group
@kbd{Q1 = qnmknode( "m/m/m-fcfs", 1 );}
@kbd{Q2 = qnmknode( "m/m/m-fcfs", 2 );}
@kbd{Q3 = qnmknode( "m/m/m-fcfs", 0.8 );}
@kbd{lambda = [0.15 0 0];}
@kbd{[U R Q X] = qnsolve( "open", sum(lambda), @{ Q1, Q2, Q3 @}, V )}
   @result{} U = 0.75000 0.45000 0.30000
   @result{} R = 4.0000  3.6364  1.1429
   @result{} Q = 3.00000 0.81818 0.42857
   @result{} X = 0.75000 0.22500 0.37500
@end group
@end example

@subsection Closed Multiclass Network/1

The following example is taken from Herb Schwetman, @cite{Implementing
the Mean Value Algorithm for the Solution of Queueing Network Models},
Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
University, Feb 15, 1982.

Let us consider the following multiclass QN with three servers and two classes

@float Figure,fig:apl
@center @image{./qn_closed_multi_apl}
@end float

Servers 1 and 2 (labeled @emph{APL} and @emph{IMS}, respectively) are
infinite server nodes; server 3 (labeled @emph{SYS}) is Processor
Sharing (PS). Mean service times are given in the following table:

@multitable @columnfractions .15 .15 .15 .15
@headitem @tab  APL @tab IMS @tab SYS
@item Class 1 @tab 1 @tab - @tab 0.025
@item Class 2 @tab - @tab 15 @tab 0.500
@end multitable

There is no class switching. If  we assume a population of 15 requests
for  class 1,  and  5 requests  for class  2,  then the  model can  be
analyzed as follows:

@example
@verbatim
 S = [1 0 .025; 0 15 .5];
 P = zeros(2,3,2,3);
 P(1,1,1,3) = P(1,3,1,1) = 1;
 P(2,2,2,3) = P(2,3,2,2) = 1;
 V = qncmvisits(P,[3 3]); # reference station is station 3
 N = [15 5];
 m = [-1 -1 1];
 [U R Q X] = qncmmva(N,S,V,m)
@end verbatim
  @result{}
U =

   14.32312    0.00000    0.35808
    0.00000    4.70699    0.15690

R =

    1.00000    0.00000    0.04726
    0.00000   15.00000    0.93374

Q =

   14.32312    0.00000    0.67688
    0.00000    4.70699    0.29301

X =

   14.32312    0.00000   14.32312
    0.00000    0.31380    0.31380
@end example

@subsection Closed Multiclass Network/2

The following example is from M. Marzolla, @cite{The qnetworks
Toolbox: A Software Package for Queueing Networks Analysis}, Technical
Report
@uref{https://www.moreno.marzolla.name/publications/papers/UBLCS-2010-04.pdf,
UBLCS-2010-04}, Department of Computer Science, University of Bologna,
Italy, February 2010.

@float Figure,fig:web_model
@center @image{./qn_web_model,3in}
@caption{Three-tier enterprise system model}
@end float

The model shown in @ref{fig:web_model} shows a three-tier enterprise
system with @math{K=6} service centers. The first tier contains the
@emph{Web server} (node 1), which is responsible for generating Web
pages and transmitting them to clients. The application logic is
implemented by nodes 2 and 3, and the storage tier is made of nodes
4--6.The system is subject to two workload classes, both represented
as closed populations of @math{N_1} and @math{N_2} requests,
respectively. Let @math{D_{c, k}} denote the service demand of class
@math{c} requests at center @math{k}. We use the parameter values:

@multitable @columnfractions .2 .33 .1 .1
@headitem Serv. no. @tab  Name @tab Class 1 @tab Class 2
@item 1 @tab Web Server    @tab 12 @tab 2
@item 2 @tab App. Server 1 @tab 14 @tab 20
@item 3 @tab App. Server 2 @tab 23 @tab 14
@item 4 @tab DB Server 1   @tab 20 @tab 90
@item 5 @tab DB Server 2   @tab 80 @tab 30
@item 6 @tab DB Server 3   @tab 31 @tab 33
@end multitable

We set the total number of requests to 100, that is @math{N_1 + N_2 =
N = 100}, and we study how different population mixes @math{(N_1,
N_2)} affect the system throughput and response time. Let
@math{0 < \beta_1 < 1} denote the fraction of class 1 requests:
@math{N_1 = \beta_1 N}, @math{N_2 = (1-\beta_1)N}. The following
Octave code defines the model for @math{\beta_1 = 0.1}:

@example
@group
N = 100;     # total population size
beta1 = 0.1; # fraction of class 1 reqs.
S = [12 14 23 20 80 31; ...
      2 20 14 90 30 33 ];
V = ones(size(S));
pop = [fix(beta1*N) N-fix(beta1*N)];
[U R Q X] = qncmmva(pop, S, V);
@end group
@end example

The @command{qncmmva(pop, S, V)} function invocation uses the
multiclass MVA algorithm to compute per-class utilizations @math{U_{c,
k}}, response times @math{R_{c,k}}, mean queue lengths @math{Q_{c,k}}
and throughputs @math{X_{c,k}} at each service center @math{k}, given
a population vector @var{pop}, mean service times @var{S} and visit
ratios @var{V}. Since we are given the service demands @math{D_{c, k}
= S_{c, k} V_{c,k}}, but function @command{qncmmva} requires separate
service times and visit ratios, we set the service times equal to the
demands, and all visit ratios equal to one. Overall class and system
throughputs and response times can also be computed:

@example
@group
X1 = X(1,1) / V(1,1)     # class 1 throughput
        @result{} X1 =  0.0044219
X2 = X(2,1) / V(2,1)     # class 2 throughput
        @result{} X2 =  0.010128
XX = X1 + X2             # system throughput
        @result{} XX =  0.014550
R1 = dot(R(1,:), V(1,:)) # class 1 resp. time
        @result{} R1 =  2261.5
R2 = dot(R(2,:), V(2,:)) # class 2 resp. time
        @result{} R2 =  8885.9
RR = N / XX              # system resp. time
        @result{} RR =  6872.7
@end group
@end example

@code{dot(X,Y)} computes the dot product of two vectors.
@code{R(1,:)} is the first row of matrix @var{R} and @code{V(1,:)} is
the first row of matrix @var{V}, so @code{dot(R(1,:), V(1,:))}
computes @math{\sum_k R_{1,k} V_{1,k}}.

@float Figure,fig:web
@center @image{./web,5in}
@caption{Throughput and Response Times as a function of the population mix}
@end float

We can also compute the system power @math{\Phi = X / R}, which
defines how efficiently resources are being used: high values of
@math{\Phi} denote the desirable situation of high throughput and low
response time. @ref{fig:power} shows @math{\Phi} as a function of
@math{\beta_1}. We observe a ``plateau'' of the global system power,
corresponding to values of @math{\beta_1} which approximately lie
between @math{0.3} and @math{0.7}. The per-class power exhibits an
interesting (although not completely surprising) pattern, where the
class with higher population exhibits worst efficiency as it produces
higher contention on the resources.

@float Figure,fig:power
@center @image{./power,5in}
@caption{System Power as a function of the population mix}
@end float

@subsection Closed Multiclass Network/3

We now consider an example of multiclass network with class switching.
The example is taken from @ref{Sch82}, and is shown in Figure
@ref{fig:class_switching}.

@float Figure,fig:class_switching
@center @image{./qn_closed_multi_cs,3in}
@caption{Multiclass Model with Class Switching}
@end float

The system consists of three devices and two job classes. The CPU node
is a PS server, while the two nodes labeled I/O are FCFS. Class 1 mean
service time at the CPU is @math{0.01}; class 2 mean service time at
the CPU is @math{0.05}. The mean service time at node 2 is @math{0.1},
and is class-independent. Similarly, the mean service time at node 3
is @math{0.07}. Jobs in class 1 leave the CPU and join class 2 with
probability @math{0.1}; jobs of class 2 leave the CPU and join class 1
with probability @math{0.2}. There are @math{N=3} jobs, which are
initially allocated to class 1. However, note that since class
switching is allowed, the total number of jobs in each class does not
remain constant; however the total number of jobs does.

@example
@verbatim
 C = 2; K = 3;
 S = [.01 .07 .10; ...
      .05 .07 .10 ];
 P = zeros(C,K,C,K);
 P(1,1,1,2) = .7; P(1,1,1,3) = .2; P(1,1,2,1) = .1;
 P(2,1,2,2) = .3; P(2,1,2,3) = .5; P(2,1,1,1) = .2;
 P(1,2,1,1) = P(2,2,2,1) = 1;
 P(1,3,1,1) = P(2,3,2,1) = 1;
 N = [3 0];
 [U R Q X] = qncmmva(N, S, P)
@end verbatim
  @result{}
U =

   0.12609   0.61784   0.25218
   0.31522   0.13239   0.31522

R =

   0.014653   0.133148   0.163256
   0.073266   0.133148   0.163256

Q =

   0.18476   1.17519   0.41170
   0.46190   0.25183   0.51462

X =

   12.6089    8.8262    2.5218
    6.3044    1.8913    3.1522
@end example