File: singlestation.texi

package info (click to toggle)
octave-queueing 1.2.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,288 kB
  • sloc: makefile: 56
file content (1023 lines) | stat: -rw-r--r-- 25,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
@c This file has been automatically generated from singlestation.txi
@c by proc.m. Do not edit this file, all changes will be lost

@c -*- texinfo -*-

@c Copyright (C) 2008, 2009, 2010, 2011, 2012, 2014, 2016, 2018 Moreno Marzolla
@c
@c This file is part of the queueing package.
@c
@c The queueing package is free software; you can redistribute it
@c and/or modify it under the terms of the GNU General Public License
@c as published by the Free Software Foundation; either version 3 of
@c the License, or (at your option) any later version.
@c
@c The queueing package is distributed in the hope that it will be
@c useful, but WITHOUT ANY WARRANTY; without even the implied warranty
@c of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with the queueing package; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Single Station Queueing Systems
@chapter Single Station Queueing Systems

Single Station Queueing Systems contain a single station, and can
usually be analyzed easily. The @code{queueing} package contains
functions for handling the following types of queues:

@ifnottex
@menu
* The M/M/1 System::    Single-server queueing station.
* The M/M/m System::    Multiple-server queueing station.
* The Erlang-B Formula::
* The Erlang-C Formula::
* The Engset Formula::
* The M/M/inf System::  Infinite-server (delay center) station.
* The M/M/1/K System::  Single-server, finite-capacity queueing station.
* The M/M/m/K System::  Multiple-server, finite-capacity queueing station.
* The Asymmetric M/M/m System::  Asymmetric multiple-server queueing station.
* The M/G/1 System:: Single-server with general service time distribution.
* The M/Hm/1 System:: Single-server with hyperexponential service time distribution.
@end menu
@end ifnottex
@iftex
@itemize

@item @math{M/M/1} single-server queueing station;

@item @math{M/M/m} multiple-server queueing station;

@item Asymmetric @math{M/M/m};

@item @math{M/M/\infty} infinite-server station (delay center);

@item @math{M/M/1/K} single-server, finite-capacity queueing station;

@item @math{M/M/m/K} multiple-server, finite-capacity queueing station;

@item @math{M/G/1} single-server with general service time distribution;

@item @math{M/H_m/1} single-server with hyperexponential service time distribution.

@end itemize

@end iftex

@c
@c M/M/1
@c
@node The M/M/1 System
@section The @math{M/M/1} System

The @math{M/M/1} system contains a single server connected to an
unbounded FCFS queue. Requests arrive according to a Poisson process
with rate @math{\lambda}; the service time is exponentially
distributed with average service rate @math{\mu}. The system is stable
if @math{\lambda < \mu}.

@anchor{doc-qsmm1}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmm1 (@var{lambda}, @var{mu})
@deftypefnx {Function File} {@var{pk} =} qsmm1 (@var{lambda}, @var{mu}, @var{k})

@cindex @math{M/M/1} system

Compute utilization, response time, average number of requests and throughput for a @math{M/M/1} queue.

@tex
The steady-state probability @math{\pi_k} that there are @math{k}
jobs in the system, @math{k \geq 0}, can be computed as:

$$
\pi_k = (1-\rho)\rho^k
$$

where @math{\rho = \lambda/\mu} is the server utilization.

@end tex

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda} @geq{} 0}).

@item @var{mu}
Service rate (@code{@var{mu} > @var{lambda}}).

@item @var{k}
Number of requests in the system (@code{@var{k} @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Server utilization

@item @var{R}
Server response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Server throughput. If the system is ergodic (@code{@var{mu} >
@var{lambda}}), we always have @code{@var{X} = @var{lambda}}

@item @var{p0}
Steady-state probability that there are no requests in the system.

@item @var{pk}
Steady-state probability that there are @var{k} requests in the system.
(including the one being served).

@end table

If this function is called with less than three input parameters,
@var{lambda} and @var{mu} can be vectors of the same size. In this
case, the results will be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998, Section 6.3
@end itemize

@xseealso{qsmmm, qsmminf, qsmmmk}

@end deftypefn


@c
@c M/M/m
@c
@node The M/M/m System
@section The @math{M/M/m} System

The @math{M/M/m} system is similar to the @math{M/M/1} system, except
that there are @math{m \geq 1} identical servers connected to a shared
FCFS queue. Thus, at most @math{m} requests can be served at the same
time. The @math{M/M/m} system can be seen as a single server with
load-dependent service rate @math{\mu(n)}, which is a function of the
number @math{n} of requests in the system:

@iftex
@tex
$$\mu(n) = \mu \times \min(m,n)$$
@end tex
@end iftex
@ifnottex
@example
mu(n) = min(m,n)*mu
@end example
@end ifnottex

@noindent where @math{\mu} is the service rate of each individual server.

@anchor{doc-qsmmm}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}, @var{pm}] =} qsmmm (@var{lambda}, @var{mu})
@deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}, @var{pm}] =} qsmmm (@var{lambda}, @var{mu}, @var{m})
@deftypefnx {Function File} {@var{pk} =} qsmmm (@var{lambda}, @var{mu}, @var{m}, @var{k})

@cindex @math{M/M/m} system

Compute utilization, response time, average number of requests in
service and throughput for a @math{M/M/m} queue, a queueing system
with @math{m} identical servers connected to a single FCFS
queue.

@tex
The steady-state probability @math{\pi_k} that there are @math{k}
requests in the system, @math{k \geq 0}, can be computed as:

$$
\pi_k = \cases{ \displaystyle{\pi_0 { ( m\rho )^k \over k!}} & $0 \leq k \leq m$;\cr\cr
                \displaystyle{\pi_0 { \rho^k m^m \over m!}} & $k>m$.\cr
}
$$

where @math{\rho = \lambda/(m\mu)} is the individual server utilization.
The steady-state probability @math{\pi_0} that there are no jobs in the
system is:

$$
\pi_0 = \left[ \sum_{k=0}^{m-1} { (m\rho)^k \over k! } + { (m\rho)^m \over m!} {1 \over 1-\rho} \right]^{-1}
$$

@end tex

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda}>0}).

@item @var{mu}
Service rate (@code{@var{mu}>@var{lambda}}).

@item @var{m}
Number of servers (@code{@var{m} @geq{} 1}).
Default is @code{@var{m}=1}.

@item @var{k}
Number of requests in the system (@code{@var{k} @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Service center utilization, @math{U = \lambda / (m \mu)}.

@item @var{R}
Service center mean response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Service center throughput. If the system is ergodic,
we will always have @code{@var{X} = @var{lambda}}

@item @var{p0}
Steady-state probability that there are 0 requests in the system

@item @var{pm}
Steady-state probability that an arriving request has to wait in the
queue

@item @var{pk}
Steady-state probability that there are @var{k} requests in the
system (including the one being served).

@end table

If this function is called with less than four parameters,
@var{lambda}, @var{mu} and @var{m} can be vectors of the same size. In this
case, the results will be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998, Section 6.5
@end itemize

@xseealso{erlangc,qsmm1,qsmminf,qsmmmk}

@end deftypefn


@c
@c Erlang-B
@c
@node The Erlang-B Formula
@section The Erlang-B Formula

@anchor{doc-erlangb}


@deftypefn {Function File} {@var{B} =} erlangb (@var{A}, @var{m})

@cindex Erlang-B formula

Compute the steady-state blocking probability in the Erlang loss model.

The Erlang-B formula @math{E_B(A, m)} gives the probability that an
open system with @math{m} identical servers, arrival rate
@math{\lambda}, individual service rate @math{\mu} and offered load
@math{A = \lambda / \mu} has all servers busy. This corresponds to
the rejection probability of an @math{M/M/m/0} system with @math{m}
servers and no queue.

@tex
@math{E_B(A, m)} is defined as:

$$
E_B(A, m) = \displaystyle{{A^m \over m!} \left( \sum_{k=0}^m {A^k \over k!} \right) ^{-1}}
$$
@end tex

@strong{INPUTS}

@table @code

@item @var{A}
Offered load, defined as @math{A = \lambda / \mu} where
@math{\lambda} is the mean arrival rate and @math{\mu} the mean
service rate of each individual server (real, @math{A > 0}).

@item @var{m}
Number of identical servers (integer, @math{m @geq{} 1}). Default @math{m = 1}

@end table

@strong{OUTPUTS}

@table @code

@item @var{B}
The value @math{E_B(A, m)}

@end table

@var{A} or @var{m} can be vectors, and in this case, the results will
be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Zeng, @cite{Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function}, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
@end itemize

@xseealso{erlangc,engset,qsmmm}

@end deftypefn


@c
@c Erlang-c
@c
@node The Erlang-C Formula
@section The Erlang-C Formula

@anchor{doc-erlangc}


@deftypefn {Function File} {@var{C} =} erlangc (@var{A}, @var{m})

@cindex Erlang-C formula

Compute the steady-state probability of delay in the Erlang delay model.

The Erlang-C formula @math{E_C(A, m)} gives the probability that an
open queueing system with @math{m} identical servers, infinite
wating space, arrival rate @math{\lambda}, individual service rate
@math{\mu} and offered load @math{A = \lambda / \mu} has all the
servers busy. This is the waiting probability in an
@math{M/M/m/\infty} system with @math{m} servers and an infinite
queue.

@tex
@math{E_C(A, m)} is defined as:

$$
E_C(A, m) = \displaystyle{ {A^m \over m!} {1 \over 1-\rho} \left( \sum_{k=0}^{m-1} {A^k \over k!} + {A^m \over m!} {1 \over 1 - \rho} \right) ^{-1}}
$$

where @math{\rho = A / m = \lambda / (m \mu)}.
@end tex

@strong{INPUTS}

@table @code

@item @var{A}
Offered load. @math{A = \lambda / \mu} where
@math{\lambda} is the mean arrival rate and @math{\mu} the mean
service rate of each individual server (real, @math{0 < A < m}).

@item @var{m}
Number of identical servers (integer, @math{m @geq{} 1}).
Default @math{m = 1}

@end table

@strong{OUTPUTS}

@table @code

@item @var{B}
The value @math{E_C(A, m)}

@end table

@var{A} or @var{m} can be vectors, and in this case, the results will
be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Zeng, @cite{Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function}, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
@end itemize

@xseealso{erlangb,engset,qsmmm}

@end deftypefn


@c
@c Engset
@c
@node The Engset Formula
@section The Engset Formula

@anchor{doc-engset}


@deftypefn {Function File} {@var{B} =} engset (@var{A}, @var{m}, @var{n})

@cindex Engset loss formula

Evaluate the Engset loss formula.

The Engset formula computes the blocking probability
@math{P_b(A,m,n)} for a system with a finite population of @math{n}
users, @math{m} identical servers, no queue, individual service
rate @math{\mu}, individual arrival rate @math{\lambda} (i.e., the
time until a user tries to request service is exponentially
distributed with mean @math{1/\lambda}), and offered load
@math{A=\lambda/\mu}.

@tex
@math{P_b(A, m, n)} is defined for @math{n > m} as:

$$
P_b(A, m, n) = {{\displaystyle{A^m {n \choose m}}} \over {\displaystyle{\sum_{k=0}^m A^k {n \choose k}}}}
$$

and is 0 if @math{n @leq{} m}.
@end tex

@strong{INPUTS}

@table @code

@item @var{A}
Offered load, defined as @math{A = \lambda / \mu} where
@math{\lambda} is the mean arrival rate and @math{\mu} the mean
service rate of each individual server (real, @math{A > 0}).

@item @var{m}
Number of identical servers (integer, @math{m @geq{} 1}). Default @math{m = 1}

@item @var{n}
Number of requests (integer, @math{n @geq{} 1}). Default @math{n = 1}

@end table

@strong{OUTPUTS}

@table @code

@item @var{B}
The value @math{P_b(A, m, n)}

@end table

@var{A}, @var{m} or @math{n} can be vectors, and in this case, the
results will be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Zeng, @cite{Two common properties of the Erlang-B function, Erlang-C function, and Engset blocking function}, Mathematical and Computer Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296
@end itemize

@xseealso{erlangb, erlangc}

@end deftypefn


@c
@c M/M/inf
@c
@node The M/M/inf System
@section The @math{M/M/}inf System

The @math{M/M/\infty} system is a special case of @math{M/M/m} system
with infinitely many identical servers (i.e., @math{m = \infty}). Each
new request is always assigned to a new server, so that queueing never
occurs. The @math{M/M/\infty} system is always stable.

@anchor{doc-qsmminf}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmminf (@var{lambda}, @var{mu})
@deftypefnx {Function File} {@var{pk} =} qsmminf (@var{lambda}, @var{mu}, @var{k})

Compute utilization, response time, average number of requests and throughput for an infinite-server queue.

The @math{M/M/\infty} system has an infinite number of identical
servers. Such a system is always stable (i.e., the mean queue
length is always finite) for any arrival and service rates.

@cindex @math{M/M/}inf system

@tex
The steady-state probability @math{\pi_k} that there are @math{k}
requests in the system, @math{k @geq{} 0}, can be computed as:

$$
\pi_k = {1 \over k!} \left( \lambda \over \mu \right)^k e^{-\lambda / \mu}
$$
@end tex

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda}>0}).

@item @var{mu}
Service rate (@code{@var{mu}>0}).

@item @var{k}
Number of requests in the system (@code{@var{k} @geq{} 0}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Traffic intensity (defined as @math{\lambda/\mu}). Note that this is
different from the utilization, which in the case of @math{M/M/\infty}
centers is always zero.

@cindex traffic intensity

@item @var{R}
Service center response time.

@item @var{Q}
Average number of requests in the system (which is equal to the
traffic intensity @math{\lambda/\mu}).

@item @var{X}
Throughput (which is always equal to @code{@var{X} = @var{lambda}}).

@item @var{p0}
Steady-state probability that there are no requests in the system

@item @var{pk}
Steady-state probability that there are @var{k} requests in the
system (including the one being served).

@end table

If this function is called with less than three arguments,
@var{lambda} and @var{mu} can be vectors of the same size. In this
case, the results will be vectors as well.

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998, Section 6.4
@end itemize

@xseealso{qsmm1,qsmmm,qsmmmk}

@end deftypefn


@c
@c M/M/1/k
@c
@node The M/M/1/K System
@section The @math{M/M/1/K} System 

In a @math{M/M/1/K} finite capacity system there is a single server,
and there can be at most @math{K} jobs at any time (including the job
currently in service), @math{K > 1}. If a new request tries to join
the system when there are already @math{K} other requests, the request
is lost. The queue has @math{K-1} slots. The @math{M/M/1/K} system is
always stable, regardless of the arrival and service rates.

@anchor{doc-qsmm1k}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}, @var{pK}] =} qsmm1k (@var{lambda}, @var{mu}, @var{K})
@deftypefnx {Function File} {@var{pn} =} qsmm1k (@var{lambda}, @var{mu}, @var{K}, @var{n})

@cindex @math{M/M/1/K} system

Compute utilization, response time, average number of requests and
throughput for a @math{M/M/1/K} finite capacity system.

In a @math{M/M/1/K} queue there is a single server and a queue with
finite capacity: the maximum number of requests in the system
(including the request being served) is @math{K}, and the maximum
queue length is therefore @math{K-1}.

@tex
The steady-state probability @math{\pi_n} that there are @math{n}
jobs in the system, @math{0 @leq{} n @leq{} K}, is:

$$
\pi_n = {(1-a)a^n \over 1-a^{K+1}}
$$

where @math{a = \lambda/\mu}.
@end tex

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda}>0}).

@item @var{mu}
Service rate (@code{@var{mu}>0}).

@item @var{K}
Maximum number of requests allowed in the system (@code{@var{K} @geq{} 1}).

@item @var{n}
Number of requests in the (@code{0 @leq{} @var{n} @leq{} K}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Service center utilization, which is defined as @code{@var{U} = 1-@var{p0}}

@item @var{R}
Service center response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Service center throughput

@item @var{p0}
Steady-state probability that there are no requests in the system

@item @var{pK}
Steady-state probability that there are @math{K} requests in the system
(i.e., that the system is full)

@item @var{pn}
Steady-state probability that there are @math{n} requests in the system
(including the one being served).

@end table

If this function is called with less than four arguments,
@var{lambda}, @var{mu} and @var{K} can be vectors of the
same size. In this case, the results will be vectors as well.

@xseealso{qsmm1,qsmminf,qsmmm}

@end deftypefn


@c
@c M/M/m/k
@c
@node The M/M/m/K System
@section The @math{M/M/m/K} System 

The @math{M/M/m/K} finite capacity system is similar to the
@math{M/M/1/k} system except that the number of servers is @math{m},
where @math{1 \leq m \leq K}. The queue has @math{K-m} slots. The
@math{M/M/m/K} system is always stable.

@anchor{doc-qsmmmk}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}, @var{pK}] =} qsmmmk (@var{lambda}, @var{mu}, @var{m}, @var{K})
@deftypefnx {Function File} {@var{pn} =} qsmmmk (@var{lambda}, @var{mu}, @var{m}, @var{K}, @var{n})

@cindex @math{M/M/m/K} system

Compute utilization, response time, average number of requests and
throughput for a @math{M/M/m/K} finite capacity system. In a
@math{M/M/m/K} system there are @math{m \geq 1} identical service centers
sharing a fixed-capacity queue. At any time, at most @math{K @geq{} m} requests can be in the system, including those being served. The maximum queue length
is @math{K-m}. This function generates and
solves the underlying CTMC.

@tex

The steady-state probability @math{\pi_n} that there are @math{n}
jobs in the system, @math{0 @leq{} n @leq{} K}, is:

$$
\pi_n = \cases{ \displaystyle{{\rho^n \over n!} \pi_0} & if $0 \leq n \leq m$;\cr\cr
                \displaystyle{{\rho^m \over m!} \left( \rho \over m \right)^{n-m} \pi_0} & if $m < n \leq K$\cr}
$$

where @math{\rho = \lambda/\mu} is the offered load. The probability
@math{\pi_0} that the system is empty can be computed by considering
that all probabilities must sum to one: @math{\sum_{k=0}^K \pi_k = 1},
that gives:

$$
\pi_0 = \left[ \sum_{k=0}^m {\rho^k \over k!} + {\rho^m \over m!} \sum_{k=m+1}^K \left( {\rho \over m}\right)^{k-m} \right]^{-1}
$$

@end tex

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda}>0})

@item @var{mu}
Service rate (@code{@var{mu}>0})

@item @var{m}
Number of servers (@code{@var{m} @geq{} 1})

@item @var{K}
Maximum number of requests allowed in the system,
including those being served (@code{@var{K} @geq{} @var{m}})

@item @var{n}
Number of requests in the (@code{0 @leq{} @var{n} @leq{} K}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Service center utilization

@item @var{R}
Service center response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Service center throughput

@item @var{p0}
Steady-state probability that there are no requests in the system.

@item @var{pK}
Steady-state probability that there are @var{K} requests in the system
(i.e., probability that the system is full).

@item @var{pn}
Steady-state probability that there are @var{n} requests in the system
(including those being served).

@end table

If this function is called with less than five arguments,
@var{lambda}, @var{mu}, @var{m} and @var{K} can be either scalars, or
vectors of the  same size. In this case, the results will be vectors
as well.

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998, Section 6.6
@end itemize

@xseealso{qsmm1,qsmminf,qsmmm}

@end deftypefn


@c
@c Asymmetric M/M/m
@c
@node The Asymmetric M/M/m System
@section The Asymmetric @math{M/M/m} System 

The Asymmetric @math{M/M/m} system contains @math{m} servers connected
to a single queue. Differently from the @math{M/M/m} system, in the
asymmetric @math{M/M/m} each server may have a different service time.

@anchor{doc-qsammm}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qsammm (@var{lambda}, @var{mu})

@cindex asymmetric @math{M/M/m} system

Compute @emph{approximate} utilization, response time, average
number of requests in service and throughput for an asymmetric
@math{M/M/m} queue. In this type of system there are @math{m} different
servers connected to a single queue. Each server has its own
(possibly different) service rate. If there is more than one server
available, requests are routed to a randomly-chosen one.

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate (@code{@var{lambda}>0})

@item @var{mu}
@code{@var{mu}(i)} is the service rate of server
@math{i}, @math{1 @leq{} i @leq{} m}.
The system must be ergodic (@code{@var{lambda} < sum(@var{mu})}).

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Approximate service center utilization,
@math{U = \lambda / ( \sum_{i=1}^m \mu_i )}.

@item @var{R}
Approximate service center response time

@item @var{Q}
Approximate number of requests in the system

@item @var{X}
Approximate system throughput. If the system is ergodic,
@code{@var{X} = @var{lambda}}

@end table

@strong{REFERENCES}

@itemize
@item
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications}, Wiley, 1998
@end itemize

@xseealso{qsmmm}

@end deftypefn


@c
@c
@c
@node The M/G/1 System
@section The @math{M/G/1} System 

@anchor{doc-qsmg1}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmg1 (@var{lambda}, @var{xavg}, @var{x2nd})

@cindex @math{M/G/1} system

Compute utilization, response time, average number of requests and
throughput for a @math{M/G/1} system. The service time distribution
is described by its mean @var{xavg}, and by its second moment
@var{x2nd}. The computations are based on results from L. Kleinrock,
@cite{Queuing Systems}, Wiley, Vol 2, and Pollaczek-Khinchine formula.

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate

@item @var{xavg}
Average service time

@item @var{x2nd}
Second moment of service time distribution

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Service center utilization

@item @var{R}
Service center response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Service center throughput

@item @var{p0}
Probability that there is not any request at system

@end table

@var{lambda}, @var{xavg}, @var{t2nd} can be vectors of the
same size. In this case, the results will be vectors as well.

@xseealso{qsmh1}

@end deftypefn


@c
@c
@c
@node The M/Hm/1 System
@section The @math{M/H_m/1} System
@anchor{doc-qsmh1}


@deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmh1 (@var{lambda}, @var{mu}, @var{alpha})

@cindex @math{M/H_m/1} system

Compute utilization, response time, average number of requests and
throughput for a @math{M/H_m/1} system. In this system, the customer
service times have hyper-exponential distribution:

@tex
$$ B(x) = \sum_{j=1}^m \alpha_j(1-e^{-\mu_j x}),\quad x>0 $$
@end tex

@ifnottex
@example
@group
       ___ m
       \
B(x) =  >  alpha(j) * (1-exp(-mu(j)*x))   x>0
       /__
           j=1
@end group
@end example
@end ifnottex

where @math{\alpha_j} is the probability that the request is served
at phase @math{j}, in which case the average service rate is
@math{\mu_j}. After completing service at phase @math{j}, for
some @math{j}, the request exits the system.

@strong{INPUTS}

@table @code

@item @var{lambda}
Arrival rate

@item @var{mu}
@code{@var{mu}(j)} is the phase @math{j} service rate. The total
number of phases @math{m} is @code{length(@var{mu})}.

@item @var{alpha}
@code{@var{alpha}(j)} is the probability that a request
is served at phase @math{j}. @var{alpha} must have the same size
as @var{mu}.

@end table

@strong{OUTPUTS}

@table @code

@item @var{U}
Service center utilization

@item @var{R}
Service center response time

@item @var{Q}
Average number of requests in the system

@item @var{X}
Service center throughput

@end table

@end deftypefn