1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018, 2020 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{t}, @var{p} )
## @deftypefnx {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{p})
##
## @cindex Markov chain, continuous time
## @cindex continuous time Markov chain
## @cindex expected sojourn time, CTMC
## @cindex CTMC
##
## With three arguments, compute the expected times @code{@var{L}(i)}
## spent in each state @math{i} during the time interval @math{[0,t]},
## assuming that the initial occupancy vector is @var{p}. With two
## arguments, compute the expected time @code{@var{L}(i)} spent in each
## transient state @math{i} until absorption.
##
## @strong{Note:} In its current implementation, this function
## requires that an absorbing state is reachable from any
## non-absorbing state of @math{Q}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{Q}(i,j)
## @math{N \times N} infinitesimal generator matrix. @code{@var{Q}(i,j)}
## is the transition rate from state @math{i} to state @math{j},
## @math{1 @leq{} i, j @leq{} N}, @math{i \neq j}.
## The matrix @var{Q} must also satisfy the
## condition @math{\sum_{j=1}^N Q_{i,j} = 0} for every @math{i=1, @dots{}, N}.
##
## @item @var{t}
## If given, compute the expected sojourn times in @math{[0,t]}
##
## @item @var{p}(i)
## Initial occupancy probability vector; @code{@var{p}(i)} is the
## probability the system is in state @math{i} at time 0, @math{i = 1,
## @dots{}, N}
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{L}(i)
## If this function is called with three arguments, @code{@var{L}(i)} is
## the expected time spent in state @math{i} during the interval
## @math{[0,t]}. If this function is called with two arguments
## @code{@var{L}(i)} is the expected time spent in transient state
## @math{i} until absorption; if state @math{i} is absorbing,
## @code{@var{L}(i)} is zero.
##
## @end table
##
## @seealso{dtmcexps}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function L = ctmcexps( Q, varargin )
persistent epsilon = 10*eps;
if ( nargin < 2 || nargin > 3 )
print_usage();
endif
[N err] = ctmcchkQ(Q);
(N>0) || ...
error(err);
if ( nargin == 2 )
p = varargin{1};
else
t = varargin{1};
p = varargin{2};
endif
( isvector(p) && length(p) == size(Q,1) && all(p>=0) && abs(sum(p)-1.0)<epsilon ) || ...
error( "p must be a probability vector" );
p = p(:)'; # make p a row vector
if ( nargin == 3 ) # non-absorbing case
if ( isscalar(t) )
(t >= 0 ) || ...
error( "t must be >= 0" );
## F(x) are the transient state occupancy probabilities at time x
## F(x) = p*expm(Q*x) (see function ctmc()).
F = @(x) (p*expm(Q*x));
L = quadv(F,0,t);
else
( isvector(t) && abs(t(1)) < epsilon ) || ...
error( "t must be a vector, and t(1) must be 0.0" );
t = t(:)'; # make t a row vector
ff = @(x,t) (x(:)'*Q+p);
fj = @(x,t) (Q);
L = lsode( {ff, fj}, zeros(size(p)), t );
endif
else # absorbing case
## Identify absorbing states. If there are no absorbing states,
## raise an error.
N = rows(Q);
tr = find( any( abs(Q) > epsilon, 2 ) ); # non-absorbing states
if ( length( tr ) == N )
error( "There are no absorbing states" );
endif
QN = Q(tr,tr);
pN = p(tr);
LN = -pN*inv(QN);
L = zeros(1,N);
L(tr) = LN;
endif
endfunction
%!test
%! Q = [-1 1; 1 -1];
%! L = ctmcexps(Q,10,[1 0]);
%! L = ctmcexps(Q,linspace(0,10,100),[1 0]);
%!test
%! Q = ctmcbd( [1 2 3], [3 2 1] );
%! p0 = [1 0 0 0];
%! t = linspace(0,10,10);
%! L1 = L2 = zeros(length(t),4);
%! # compute L using the differential equation formulation
%! ff = @(x,t) (x(:)'*Q+p0);
%! fj = @(x,t) (Q);
%! L1 = lsode( {ff, fj}, zeros(size(p0)), t );
%! # compute L using ctmcexps (integral formulation)
%! for i=1:length(t)
%! L2(i,:) = ctmcexps(Q,t(i),p0);
%! endfor
%! assert( L1, L2, 1e-5);
%!demo
%! lambda = 0.5;
%! N = 4;
%! b = lambda*[1:N-1];
%! d = zeros(size(b));
%! Q = ctmcbd(b,d);
%! t = linspace(0,10,100);
%! p0 = zeros(1,N); p0(1)=1;
%! L = zeros(length(t),N);
%! for i=1:length(t)
%! L(i,:) = ctmcexps(Q,t(i),p0);
%! endfor
%! plot( t, L(:,1), ";State 1;", "linewidth", 2, ...
%! t, L(:,2), ";State 2;", "linewidth", 2, ...
%! t, L(:,3), ";State 3;", "linewidth", 2, ...
%! t, L(:,4), ";State 4;", "linewidth", 2 );
%! legend("location","northwest"); legend("boxoff");
%! xlabel("Time");
%! ylabel("Expected sojourn time");
%!demo
%! lambda = 0.5;
%! N = 4;
%! b = lambda*[1:N-1];
%! d = zeros(size(b));
%! Q = ctmcbd(b,d);
%! p0 = zeros(1,N); p0(1)=1;
%! L = ctmcexps(Q,p0);
%! disp(L);
|