File: ctmcexps.m

package info (click to toggle)
octave-queueing 1.2.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,288 kB
  • sloc: makefile: 56
file content (187 lines) | stat: -rw-r--r-- 5,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018, 2020 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{t}, @var{p} )
## @deftypefnx {Function File} {@var{L} =} ctmcexps (@var{Q}, @var{p})
##
## @cindex Markov chain, continuous time
## @cindex continuous time Markov chain
## @cindex expected sojourn time, CTMC
## @cindex CTMC
##
## With three arguments, compute the expected times @code{@var{L}(i)}
## spent in each state @math{i} during the time interval @math{[0,t]},
## assuming that the initial occupancy vector is @var{p}. With two
## arguments, compute the expected time @code{@var{L}(i)} spent in each
## transient state @math{i} until absorption.
##
## @strong{Note:} In its current implementation, this function
## requires that an absorbing state is reachable from any
## non-absorbing state of @math{Q}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{Q}(i,j)
## @math{N \times N} infinitesimal generator matrix. @code{@var{Q}(i,j)}
## is the transition rate from state @math{i} to state @math{j},
## @math{1 @leq{} i, j @leq{} N}, @math{i \neq j}.
## The matrix @var{Q} must also satisfy the
## condition @math{\sum_{j=1}^N Q_{i,j} = 0} for every @math{i=1, @dots{}, N}.
##
## @item @var{t}
## If given, compute the expected sojourn times in @math{[0,t]}
##
## @item @var{p}(i)
## Initial occupancy probability vector; @code{@var{p}(i)} is the
## probability the system is in state @math{i} at time 0, @math{i = 1,
## @dots{}, N}
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{L}(i)
## If this function is called with three arguments, @code{@var{L}(i)} is
## the expected time spent in state @math{i} during the interval
## @math{[0,t]}. If this function is called with two arguments
## @code{@var{L}(i)} is the expected time spent in transient state
## @math{i} until absorption; if state @math{i} is absorbing,
## @code{@var{L}(i)} is zero.
##
## @end table
##
## @seealso{dtmcexps}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function L = ctmcexps( Q, varargin )

  persistent epsilon = 10*eps;

  if ( nargin < 2 || nargin > 3 )
    print_usage();
  endif

  [N err] = ctmcchkQ(Q);

  (N>0) || ...
      error(err);

  if ( nargin == 2 )
    p = varargin{1};
  else
    t = varargin{1};
    p = varargin{2};
  endif

  ( isvector(p) && length(p) == size(Q,1) && all(p>=0) && abs(sum(p)-1.0)<epsilon ) || ...
      error( "p must be a probability vector" );

  p = p(:)'; # make p a row vector

  if ( nargin == 3 ) # non-absorbing case
    if ( isscalar(t) )
      (t >= 0 ) || ...
	  error( "t must be >= 0" );
      ## F(x) are the transient state occupancy probabilities at time x
      ## F(x) = p*expm(Q*x) (see function ctmc()).
      F = @(x) (p*expm(Q*x));
      L = quadv(F,0,t);
    else
      ( isvector(t) && abs(t(1)) < epsilon ) || ...
	  error( "t must be a vector, and t(1) must be 0.0" );
      t = t(:)'; # make t a row vector
      ff = @(x,t) (x(:)'*Q+p);
      fj = @(x,t) (Q);
      L = lsode( {ff, fj}, zeros(size(p)), t );
    endif
  else # absorbing case

    ## Identify absorbing states. If there are no absorbing states,
    ## raise an error.

    N = rows(Q);
    tr = find( any( abs(Q) > epsilon, 2 ) ); # non-absorbing states
    if ( length( tr ) == N )
      error( "There are no absorbing states" );
    endif

    QN = Q(tr,tr);
    pN = p(tr);
    LN = -pN*inv(QN);
    L = zeros(1,N);
    L(tr) = LN;
  endif
endfunction
%!test
%! Q = [-1 1; 1 -1];
%! L = ctmcexps(Q,10,[1 0]);
%! L = ctmcexps(Q,linspace(0,10,100),[1 0]);

%!test
%! Q = ctmcbd( [1 2 3], [3 2 1] );
%! p0 = [1 0 0 0];
%! t = linspace(0,10,10);
%! L1 = L2 = zeros(length(t),4);
%! # compute L using the differential equation formulation
%! ff = @(x,t) (x(:)'*Q+p0);
%! fj = @(x,t) (Q);
%! L1 = lsode( {ff, fj}, zeros(size(p0)), t );
%! # compute L using ctmcexps (integral formulation)
%! for i=1:length(t)
%!   L2(i,:) = ctmcexps(Q,t(i),p0);
%! endfor
%! assert( L1, L2, 1e-5);

%!demo
%! lambda = 0.5;
%! N = 4;
%! b = lambda*[1:N-1];
%! d = zeros(size(b));
%! Q = ctmcbd(b,d);
%! t = linspace(0,10,100);
%! p0 = zeros(1,N); p0(1)=1;
%! L = zeros(length(t),N);
%! for i=1:length(t)
%!   L(i,:) = ctmcexps(Q,t(i),p0);
%! endfor
%! plot( t, L(:,1), ";State 1;", "linewidth", 2, ...
%!       t, L(:,2), ";State 2;", "linewidth", 2, ...
%!       t, L(:,3), ";State 3;", "linewidth", 2, ...
%!       t, L(:,4), ";State 4;", "linewidth", 2 );
%! legend("location","northwest"); legend("boxoff");
%! xlabel("Time");
%! ylabel("Expected sojourn time");

%!demo
%! lambda = 0.5;
%! N = 4;
%! b = lambda*[1:N-1];
%! d = zeros(size(b));
%! Q = ctmcbd(b,d);
%! p0 = zeros(1,N); p0(1)=1;
%! L = ctmcexps(Q,p0);
%! disp(L);