File: qncmbsb.m

package info (click to toggle)
octave-queueing 1.2.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,288 kB
  • sloc: makefile: 56
file content (175 lines) | stat: -rw-r--r-- 5,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## Copyright (C) 2012, 2016, 2020, 2022 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmbsb (@var{N}, @var{D})
## @deftypefnx {Function File} {[@var{Xl}, @var{Xu}, @var{Rl}, @var{Ru}] =} qncmbsb (@var{N}, @var{S}, @var{V})
##
## @cindex bounds, balanced system
## @cindex balanced system bounds
## @cindex multiclass network, closed
## @cindex closed multiclass network
##
## Compute Balanced System Bounds for closed, multiclass networks
## with @math{K} service centers and @math{C} customer classes.
## Only single-server nodes are supported.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}(c)
## number of class @math{c} requests in the system (vector of length
## @math{C}).
##
## @item @var{D}(c, k)
## class @math{c} service demand  at center @math{k} (@math{C \times K}
## matrix, @code{@var{D}(c,k) @geq{} 0}).
##
## @item @var{S}(c, k)
## mean service time of class @math{c}
## requests at center @math{k} (@math{C \times K} matrix, @code{@var{S}(c,k) @geq{} 0}).
##
## @item @var{V}(c,k)
## average number of visits of class @math{c}
## requests to center @math{k} (@math{C \times K} matrix, @code{@var{V}(c,k) @geq{} 0}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{Xl}(c)
## @itemx @var{Xu}(c)
## Lower and upper class @math{c} throughput bounds (vector of length @math{C}).
##
## @item @var{Rl}(c)
## @itemx @var{Ru}(c)
## Lower and upper class @math{c} response time bounds (vector of length @math{C}).
##
## @end table
##
## @seealso{qncsbsb}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function [Xl Xu Rl Ru] = qncmbsb( varargin )

  if ( nargin<2 || nargin>5 )
    print_usage();
  endif

  [err N S V m Z] = qncmchkparam( varargin{:} );
  isempty(err) || error(err);

  all(m<=1) || ...
      error("Multiple-server nodes are not supported");

  all(Z == 0 ) || ...
      error("This function only supports Z=0");

  if ( sum(N) == 0 ) # handle trivial case of empty network
    Xl = Xu = Rl = Ru = zeros(size(S));
  else
    D = S .* V;
    K = columns(S);

    ## Equations from T. Kerola, The Composite Bound Method (CBM) for
    ## Computing Throughput Bounds in Multiple Class Environments},
    ## Technical Report CSD-TR-475, Department of Computer Sciences,
    ## Purdue University, mar 13 1984 (Revisted aug 27, 1984), available
    ## at http://docs.lib.purdue.edu/cstech/395/

    Dc = sum(D,2)';
    D_max = max(D,[],2)';
    D_min = min(D,[],2)';
    Xl = N ./ (Dc + (sum(N)-1) .* D_max);
    Xu = min( 1./D_max, N ./ ((K+sum(N)-1) .* D_min));
    Rl = N ./ Xu;
    Ru = N ./ Xl;
  endif
endfunction

%!test
%! fail("qncmbsb([],[])", "nonempty");
%! fail("qncmbsb([1 0], [1 2 3])", "2 rows");
%! fail("qncmbsb([1 0], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmbsb([1 2], [1 2 3; 4 5 6], [1 2 3])", "2 x 3");
%! fail("qncmbsb([1 2], [1 2 3; 4 5 6], [1 2 3; 4 5 -1])", "nonnegative");
%! fail("qncmbsb([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1])", "3 elements");
%! fail("qncmbsb([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 2])", "not supported");
%! fail("qncmbsb([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 2 3])", "2 elements");
%! fail("qncmbsb([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 -2])", "nonnegative");
%! fail("qncmbsb([1 2], [1 2 3; 1 2 3], [1 2 3; 1 2 3], [1 1 -1],[1 0])", "only supports");

%!test
%! [Xl Xu Rl Ru] = qncmbsb([0 0], [1 2 3; 1 2 3]);
%! assert( all(Xl(:) == 0) );
%! assert( all(Xu(:) == 0) );
%! assert( all(Rl(:) == 0) );
%! assert( all(Ru(:) == 0) );

%!test
%! S = [10 7 5 4; ...
%!      5  2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%!   N=[n,10];
%!   [a b c d] = qncmbsb(N,S);
%!   Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%!   [U R Q X] = qncmmva(N,S,ones(size(S)));
%!   Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! assert( all(Xl <= Xmva) );
%! assert( all(Xu >= Xmva) );
%! assert( all(Rl <= Rmva) );
%! assert( all(Xu >= Xmva) );

%!demo
%! S = [10 7 5 4; ...
%!      5  2 4 6];
%! NN=20;
%! Xl = Xu = Rl = Ru = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%!   N=[n,10];
%!   [a b c d] = qncmbsb(N,S);
%!   Xl(n,:) = a; Xu(n,:) = b; Rl(n,:) = c; Ru(n,:) = d;
%!   [U R Q X] = qncmmva(N,S,ones(size(S)));
%!   Xmva(n,:) = X(:,1)'; Rmva(n,:) = sum(R,2)';
%! endfor
%! subplot(2,2,1);
%! plot(1:NN,Xl(:,1), 1:NN,Xu(:,1), 1:NN,Xmva(:,1),";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 1 throughput"); legend("boxoff");
%! subplot(2,2,2);
%! plot(1:NN,Xl(:,2), 1:NN,Xu(:,2), 1:NN,Xmva(:,2),";MVA;", "linewidth", 2);
%! ylim([0, 0.2]);
%! title("Class 2 throughput"); legend("boxoff");
%! subplot(2,2,3);
%! plot(1:NN,Rl(:,1), 1:NN,Ru(:,1), 1:NN,Rmva(:,1),";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 1 response time"); legend("location", "northwest"); legend("boxoff");
%! subplot(2,2,4);
%! plot(1:NN,Rl(:,2), 1:NN,Ru(:,2), 1:NN,Rmva(:,2),";MVA;", "linewidth", 2);
%! ylim([0, 700]);
%! title("Class 2 response time"); legend("location", "northwest"); legend("boxoff");