1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2016, 2018, 2020, 2022 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S} )
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P}, @var{r})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncmmva (@var{N}, @var{S}, @var{P}, @var{r}, @var{m})
##
## @cindex Mean Value Analysys (MVA)
## @cindex closed network, multiple classes
## @cindex multiclass network, closed
##
## Compute steady-state performance measures for closed, multiclass
## queueing networks using the Mean Value Analysys (MVA) algorithm.
##
## Queueing policies at service centers can be any of the following:
##
## @table @strong
##
## @item FCFS
## (First-Come-First-Served) customers are served in order of arrival;
## multiple servers are allowed. For this kind of queueing discipline,
## average service times must be class-independent.
##
## @item PS
## (Processor Sharing) customers are served in parallel by a single
## server, each customer receiving an equal share of the service rate.
##
## @item LCFS-PR
## (Last-Come-First-Served, Preemptive Resume) customers are served in
## reverse order of arrival by a single server and the last arrival
## preempts the customer in service who will later resume service at the
## point of interruption.
##
## @item IS
## (Infinite Server) customers are delayed independently of other
## customers at the service center (there is effectively an infinite
## number of servers).
##
## @end table
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}(c)
## number of class @math{c} requests; @code{@var{N}(c) @geq{} 0}. If
## class @math{c} has no requests (@code{@var{N}(c) == 0}), then for
## all @var{k}, this function returns
## @code{@var{U}(c,k) = @var{R}(c,k) = @var{Q}(c,k) = @var{X}(c,k) = 0}
##
## @item @var{S}(c,k)
## mean service time for class @math{c} requests at center @math{k}
## (@code{@var{S}(c,k) @geq{} 0}). If the service time at center
## @math{k} is class-dependent, then center @math{k} is assumed
## to be of type @math{-/G/1}--PS (Processor Sharing). If center
## @math{k} is a FCFS node (@code{@var{m}(k)>1}), then the service
## times @strong{must} be class-independent, i.e., all classes
## @strong{must} have the same service time.
##
## @item @var{V}(c,k)
## average number of visits of class @math{c} requests at
## center @math{k}; @code{@var{V}(c,k) @geq{} 0}, default is 1.
## @strong{If you pass this argument, class switching is not allowed}
##
## @item @var{P}(r,i,s,j)
## probability that a class @math{r} request completing service at center
## @math{i} is routed to center @math{j} as a class @math{s} request; the
## reference stations for each class are specified with the paramter
## @var{r}. @strong{If you pass argument @var{P}, class switching is
## allowed}; however, you can not specify any external delay (i.e.,
## @var{Z} must be zero) and all servers must be fixed-rate or
## infinite-server nodes (@code{@var{m}(k) @leq{} 1} for all
## @math{k}).
##
## @item @var{r}(c)
## reference station for class @math{c}. If omitted, station 1 is the
## reference station for all classes. See @command{qncmvisits}.
##
## @item @var{m}(k)
## If @code{@var{m}(k)<1}, then center @math{k} is assumed to be a delay
## center (IS node @math{-/G/\infty}). If @code{@var{m}(k)==1}, then
## service center @math{k} is a regular queueing center
## (@math{M/M/1}--FCFS, @math{-/G/1}--LCFS-PR or @math{-/G/1}--PS).
## Finally, if @code{@var{m}(k)>1}, center @math{k} is a
## @math{M/M/m}--FCFS center with @code{@var{m}(k)} identical servers.
## Default is @code{@var{m}(k)=1} for each @math{k}.
##
## @item @var{Z}(c)
## class @math{c} external delay (think time); @code{@var{Z}(c) @geq{}
## 0}. Default is 0. This parameter can not be used if you pass a
## routing matrix as the second parameter of @code{qncmmva}.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(c,k)
## If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) @geq{}
## 1}), then @code{@var{U}(c,k)} is the class @math{c} utilization at
## center @math{k}, @math{0 @leq{} U(c,k) @leq{} 1}. If @math{k} is an
## IS node, then @code{@var{U}(c,k)} is the class @math{c} @emph{traffic
## intensity} at center @math{k}, defined as @code{@var{U}(c,k) =
## @var{X}(c,k)*@var{S}(c,k)}. In this case the value of
## @code{@var{U}(c,k)} may be greater than one.
##
## @item @var{R}(c,k)
## class @math{c} response time at center @math{k}. The class @math{c}
## @emph{residence time} at center @math{k} is @code{@var{R}(c,k) *
## @var{C}(c,k)}. The total class @math{c} system response time is
## @code{dot(@var{R}, @var{V}, 2)}.
##
## @item @var{Q}(c,k)
## average number of class @math{c} requests at center @math{k}. The
## total number of requests at center @math{k} is
## @code{sum(@var{Q}(:,k))}. The total number of class @math{c}
## requests in the system is @code{sum(@var{Q}(c,:))}.
##
## @item @var{X}(c,k)
## class @math{c} throughput at center @math{k}. The class @math{c}
## throughput can be computed as @code{@var{X}(c,1) / @var{V}(c,1)}.
##
## @end table
##
## @strong{NOTES}
##
## If the function call specifies the visit ratios @var{V}, then class
## switching is @strong{not} allowed. If the function call specifies
## the routing probability matrix @var{P}, then class switching
## @strong{is} allowed; however, in this case all nodes are restricted
## to be fixed rate servers or delay centers: multiple-server and
## general load-dependent centers are not supported.
##
## In presence of load-dependent servers (e.g., if @code{@var{m}(i)>1}
## for some @math{i}), the MVA algorithm is known to be numerically
## unstable. Generally this problem shows up as negative values for the
## computed response times or utilizations. This is not a problem with the
## @code{queueing} package, but with the MVA algorithm;
## as such, there is no known workaround at the moment (aoart from using a
## different solution technique, if available). This function prints a
## warning if it detects numerical problems; you can disable the warning
## with the command @code{warning("off", "qn:numerical-instability")}.
##
## Given a network with @math{K} service centers, @math{C} job classes
## and population vector @math{{\bf N}=\left[N_1, @dots{}, N_C\right]}, the MVA
## algorithm requires space @math{O(C \prod_i (N_i + 1))}. The time
## complexity is @math{O(CK\prod_i (N_i + 1))}. This implementation is
## slightly more space-efficient (see details in the code). While the
## space requirement can be mitigated by using some optimizations, the
## time complexity can not. If you need to analyze large closed networks
## you should consider the @command{qncmmvaap} function, which implements
## the approximate MVA algorithm. Note however that @command{qncmmvaap}
## will only provide approximate results.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
## Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2, April
## 1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
## @end itemize
##
## This implementation is based on G. Bolch, S. Greiner, H. de Meer and
## K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling and
## Performance Evaluation with Computer Science Applications}, Wiley,
## 1998 and Edward D. Lazowska, John Zahorjan, G. Scott Graham, and
## Kenneth C. Sevcik, @cite{Quantitative System Performance: Computer
## System Analysis Using Queueing Network Models}, Prentice Hall,
## 1984. @url{http://www.cs.washington.edu/homes/lazowska/qsp/}. In
## particular, see section 7.4.2.1 ("Exact Solution Techniques").
##
## @seealso{qnclosed, qncmmvaapprox, qncmvisits}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X] = qncmmva( varargin )
if ( nargin < 2 || nargin > 5 )
print_usage();
endif
if ( nargin == 2 || ndims(varargin{3}) == 2 )
[err N S V m Z] = qncmchkparam( varargin{:} );
isempty(err) || error(err);
[U R Q X] = __qncmmva_nocs( N, S, V, m, Z );
else
[U R Q X] = __qncmmva_cs( varargin{:} );
endif
endfunction
##############################################################################
## Analyze closed, multiclass QNs with class switching
function [U R Q X] = __qncmmva_cs( N, S, P, r, m )
if ( nargin < 3 || nargin > 5 )
print_usage();
endif
isvector(N) && all( N>=0 ) || ...
error( "N must be >=0" );
N = N(:)'; # make N a row vector
C = length(N); ## Number of classes
( ndims(S) == 2 ) || ...
error( "S must be a matrix" );
K = columns(S); ## Number of service centers
size(S) == [C,K] || ...
error( "S size mismatch (is %dx%d, should be %dx%d)", rows(S), columns(S), C, K );
ndims(P) == 4 && size(P) == [C,K,C,K] || ...
error( "P size mismatch (should be %dx%dx%dx%d)",C,K,C,K );
if ( nargin < 4 )
r = ones(1,C); # reference station
else
if (isscalar(r))
r = r*ones(1,C);
endif
( isvector(r) && length(r) == C ) || ...
error("r must be a vector with %d elements", C);
r = r(:)';
all( r>=1 && r<=K ) || ...
error("elements of r are out of range [1,%d]",K);
endif
if ( nargin < 5 )
m = ones(1,K);
else
isvector(m) || ...
error( "m must be a vector" );
m = m(:)'; # make m a row vector
length(m) == K || ...
error( "m size mismatch (should be %d, is %d)", K, length(m) );
endif
## Check consistency of parameters
all(S(:) >= 0) || ...
error( "S must be >= 0" );
all( any(S>0,2) ) || ...
error( "S must contain at least a value >0 for each row" );
all(P(:)>= 0) || ...
error( "P must be >=0" );
U = R = Q = X = zeros(C,K);
## 1. Compute visit counts
[V ch] = qncmvisits(P,r);
## 2. Identify chains
nch = max(ch);
## 3. Compute visit counts for the equivalent network
Vstar = zeros(nch,K);
for q=1:nch
r = (ch == q);
Vstar(q,:) = sum(V(r,:),1);
endfor
## 4. Compute proportionality constants
alpha = zeros(C,K);
for r=1:C
for k=find( Vstar(ch(r),:) > 0 )
alpha(r,k) = V(r,k) / Vstar( ch(r), k );
endfor
endfor
## 5. Compute service times
Sstar = zeros(nch,K);
for q=1:nch
r = (ch==q);
Sstar(q,:) = dot( alpha(r,:), S(r,:), 1 );
endfor
## 6. Compute populations of superclasses
Nstar = zeros(1,nch);
for q=1:nch
r = (ch == q);
Nstar(q) = sum( N(r) );
endfor
## 7. Solve the equivalent network
[Ustar Rstar Qstar Xstar Qnm1] = __qncmmva_nocs( Nstar, Sstar, Vstar, m, zeros(size(Nstar)) );
## 8. Compute solutions of the original network
for r=1:C
for k=1:K
R(r,k) = S(r,k) * (1 + Qnm1(ch(r),k)*(m(k)==1));
X(r,k) = alpha(r,k) * Xstar(ch(r),k);
Q(r,k) = X(r,k) * R(r,k);
U(r,k) = S(r,k) * X(r,k) / max(1,m(k));
endfor
endfor
## 9. Check for numerical instability
if ( any(U(:)<0) || any(R(:)<0) )
warning("qn:numerical-instability",
"Numerical instability detected. Type 'help qncmmva' for details");
endif
endfunction
##############################################################################
## Analyze closed, multiclass QNs WITHOUT class switching
##
## This implementation is based on:
##
## Herb Schwetman, "Implementing the Mean Value Algorithm for the
## Solution of Queueing Network Models", technical report OSD-TR-355,
## dept. of Computer Science, Purdue University, feb. 1982.
##
function [U R Q X Qnm1] = __qncmmva_nocs( N, S, V, m, Z )
assert( nargin == 5 );
all( any(S>0,2) ) || ...
error( "S must contain at least a value >0 for each row" );
[C K] = size(S);
## ensure that the service times for multiserver nodes
## are class-independent
for k=find(m>1)
all( S(:,k) == S(1,k) ) || ...
error( "Service times for FCFS node %d are not class-independent", k );
endfor
## Initialize results
R = zeros( C, K );
X = zeros( 1, C );
D = S .* V;
## The multiclass MVA algorithm requires to store the queue lengths Q(
## _n_, k ) at center k where the population vector is _n_. The space
## required would be K*prod(N+1), but this can be reduced by
## considering that, at each iteration of the main MVA loop, the total
## number of requests is n; therefore it is sufficient to consider the
## first (C-1) components of vector _n_ to uniquely identify the cell
## containing Q( _n_, k ). See Schwetman for a better explanation.
bufsize = prod((N+1)(1:end-1));
Q_next = Q = zeros( bufsize,K );
p = cell(1,K);
for k=find(m>1)
## p{i}(j+1,k+1) is the probability to have j jobs at node i
## where the network is in state k
p{k} = zeros( m(k)+1,bufsize );
p{k}(1,__getidx(N,0*N)) = 1;
endfor
Qnm1= zeros(C,K); ## Qnm1(c,k) is the number of requests in center k, provided that the population size is N-1_c (N is the total population vector). This value is needed by __qncmmva_cs. Qnm1 is only filled for M/M/1 or PS centers. The values are not computed for PS nodes
dd = zeros(1,C);
for c=find(N>0)
h = zeros(1,C); h(c) = 1;
dd(c) = __getidx(N,h)-1;
endfor
for n=1:sum(N)
## MVA iteration for population size n
n_bar = zeros(1, C);
const = min(n, N);
mp = 0;
while ( all(n_bar(C) <= const(C)) )
## Fill the current configuration (algorithm 3b, p. 10, Schwetman)
x=n-mp;
i=1;
while ( x>0 && i<=C )
n_bar(i) = min(x,const(i));
x -= n_bar(i);
mp += n_bar(i);
i += 1;
endwhile
idx = __getidx( N, n_bar );
R = S;
## Compute response time for LI servers
k=find(m==1);
for c=find(n_bar>0)
## idx-dd(c) is the index of element n_bar - 1_c
R(c,k) = S(c,k).*(1 + Q( idx-dd(c), k ) );
Qnm1(c,k) = Q( idx-dd(c), k);
## for FCFS nodes with class-dependent service times,
## it is possible to use the following approximation
## (p. 469 Bolch et al.)
##
## R(c,k) = S(c,k) + sum( S(:,k) * Q(idx(:), k) );
## R(c,k) = S(c,k) + sum( S(:,k) .* Q(idx, k) .* V(:,k) ) / sum(V(:,k));
endfor
## Compute response time for LD servers
for k=find(m>1)
j=0:m(k)-2; # range
for c=find(n_bar > 0 )
R(c,k) = S(c,k)/m(k)*(1 + Q( idx-dd(c), k ) + ...
dot(m(k)-j-1,p{k}(j+1,idx-dd(c)) ) );
endfor
endfor
X = n_bar ./ ( Z + dot(R,V,2)' ); # X(c) = N(c) / ( Z(c) + sum_k R(c,k) * V(c,k) )
## Q_k = sum_c X(c) * R(c,k) * V(c,k)
Q_next( idx, : ) = (X * (R .* V))';
## Update marginal probabilities for LD servers
for k=find(m>1)
j = 1:m(k)-1;
s = zeros(size(j));
for r=find(n_bar>0)
s+=(D(r,k)*X(r)*p{k}(j,idx-dd(r)))';
endfor
p{k}(j+1,idx) = s./j;
p{k}(1,idx) = 1-1/m(k)*(dot( D(:,k),X ) + ...
dot( m(k)-j, p{k}(j+1,idx) ) );
endfor
#{
## The following "if" is in the paper, but it makes the algorithm
## incorrect. Therefore, it is commented out.
if ( n_bar(C) == N(C) )
break;
endif
#}
## Advance to next feasible configuration (Algorithm 3c, p. 10 Schwetman)
i = 1;
sw = true;
while sw
if ( ( mp==n || n_bar(i)==const(i)) && ( i<C ) )
mp -= n_bar(i);
n_bar(i) = 0;
i += 1;
else
n_bar(i)=n_bar(i)+1;
mp += 1;
sw = false;
endif
endwhile
endwhile
Q = Q_next;
endfor
U = diag(X)*D ./ max(1,repmat(m,C,1)); # U(c,k) = X(c)*D(c,k)
Q = diag(X)*(R.*V);
X = diag(X)*V;
## Check for numerical instability
if ( any(U(:)<0) || any(R(:)<0) )
warning("qn:numerical-instability",
"Numerical instability detected. Type 'help qncmmva' for details");
endif
endfunction
##############################################################################
## Compute the linear index corresponding to vector i from a population
## of N.
function idx = __getidx( N, i )
if ( length(N) == 1 )
idx = 1;
else
i_cell = num2cell( (i+1)(1:end-1) );
idx = sub2ind( (N+1)(1:end-1), i_cell{:} );
endif
endfunction
%!test
%! S = [1 1 2; 1 1 1];
%! V = [1 1 1; 1 1 1];
%! N = [1 1];
%! m = [1 1 2];
%! fail( "qncmmva(N)" );
%! fail( "qncmmva(N,S,V,m)", "independent" );
%! S = [0 0 0; 1 1 1];
%! fail( "qncmmva(N,S,V,m)", "must contain at least" );
%! S = [1 2 3; 1 2 3];
%! N = [1 1];
%! V = zeros(3,2,3);
%! fail( "qncmmva(N,S,V)", "size mismatch" );
%! fail( "qncmmva([0.3 1], [1 2; 3 4])", "integer");
%! fail( "qncmmva([-1 0], [1 2; 3 4])", "nonnegative");
## Check degenerate case (population is zero); LI servers
%!test
%! S = [1 1 1; 1 1 1];
%! N = [0 0];
%! [U R Q X] = qncmmva(N, S);
%! assert( U, 0*S );
%! assert( R, 0*S );
%! assert( Q, 0*S );
%! assert( X, 0*S );
## Check degenerate case (population is zero); LD servers
%!test
%! S = [1 1 1; 1 1 1];
%! V = [1 1 1; 1 1 1];
%! N = [0 0];
%! m = [2 2 2];
%! [U R Q X] = qncmmva(N, S, V, m);
%! assert( U, 0*S );
%! assert( R, 0*S );
%! assert( Q, 0*S );
%! assert( X, 0*S );
## Example p. 142, Lazowska et al., "Quantitative System Performance:
## Computer System Analysis Using Queueing Network Models"
%!test
%! S = [ 1/10 1/3; 2/5 1 ];
%! V = [ 10 9; 5 4 ];
%! N = [ 1 1 ];
%! [U R Q X] = qncmmva(N,S,V);
%! assert( Q, [ 4/19 15/19; 5/19 14/19 ], 1e-3 );
%! assert( R .* V, [ 4/3 5; 5/2 7 ], 1e-3 );
%! assert( diag( X ./ V )', [ 3/19 2/19 ], 1e-3 );
%! assert( all(U(:)<=1) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## Example 8.3 p. 331, Bolch et al. Note that this is not a multiclass
## network, because there is a single job class. Nevertheless, the
## multiclass MVA algorithm must produce the same results as the single
## class one.
%!test
%! S = [0.02 0.2 0.4 0.6];
%! V = [1 0.4 0.2 0.1];
%! N = [6];
%! [U R Q X] = qncmmva( N, S, V );
%! assert( Q, [0.244 2.261 2.261 1.234], 1e-3 );
%! assert( R, [0.025 0.570 1.140 1.244], 1e-3 );
%! assert( X, [9.920 3.968 1.984 0.992], 1e-3 );
%! assert( U, [0.198 0.794 0.794 0.595], 1e-3 );
## Example from table 3, p. 22, Herb Schwetman, "Implementing the Mean
## Value Algorith for the Solution of Queueing Network Models",
## Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
## University, feb 15, 1982.
%!test
%! S = [1 0 .025; 0 15 .5];
%! V = [1 0 1; 0 1 1];
%! N = [2 1];
%! m = [-1 -1 1];
%! [U R Q X] = qncmmva(N,S,V,m);
%! assert( R(1,1), 1, 1e-3 );
%! assert( R(2,2), 15, 1e-3 );
%! assert( R(1,3), .027, 1e-3 );
%! assert( R(2,3), .525, 1e-3 );
%! assert( X(1,1)+X(1,2), 1.949, 1e-3 );
%! assert( X(2,1)+X(2,2), 0.064, 1e-3 );
%! assert( sum(Q,1), [1.949, .966, .085], 1e-3 );
%! assert( all(U(:,3)<=1) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## Example from table 5, p. 23, Herb Schwetman, "Implementing the Mean
## Value Algorith for the Solution of Queueing Network Models",
## Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
## University, feb 15, 1982.
%!test
%! S = [1 0 .025; 0 15 .5];
%! V = [1 0 1; 0 1 1];
%! N = [15 5];
%! m = [-1 -1 1];
%! [U R Q X] = qncmmva(N,S,V,m);
%! # I replaced 14.3->14.323
%! assert( U, [14.323 0 .358; 0 4.707 .157], 1e-3 );
%! # I replaced 14.3->14.323
%! assert( X, [14.323 0 14.323; 0 .314 .314 ], 1e-3 );
%! # I replaced 14.3->14.323
%! assert( Q, [14.323 0 .677; 0 4.707 .293 ], 1e-3 );
%! assert( R, [1 0 .047; 0 15 .934 ], 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## Example 9.5 p. 337, Bolch et al.
%!test
%! S = [ 0.2 0.4 1; 0.2 0.6 2 ];
%! V = [ 1 0.6 0.4; 1 0.3 0.7 ];
%! N = [ 2 1 ];
%! m = [ 2 1 -1 ];
%! [U R Q X] = qncmmva(N,S,V,m);
%! assert( Q, [ 0.428 0.726 0.845; 0.108 0.158 0.734 ], 1e-3 );
%! assert( X(1,1), 2.113, 1e-3 ); # CHECK
%! assert( X(2,1), 0.524, 1e-3 ); # CHECK
%! assert( all(U(:)<=1) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## Multiclass network with two classes; however, class 2 has 0 requests.
## Therefore, we check that the results for class 1 are the same as those
## computed by the single-class MVA
%!test
%! C = 2; # two classes
%! K = 4; # four servers
%! S = V = zeros(C,K);
%! S(1,:) = linspace(1,2,K);
%! S(2,:) = linspace(2,3,K);
%! V(1,:) = linspace(4,1,K);
%! V(2,:) = linspace(6,3,K);
%! N = [10 0]; # class 2 has no customers
%! [U1 R1 Q1 X1] = qncmmva(N,S,V);
%! [U2 R2 Q2 X2] = qncsmva(N(1),S(1,:),V(1,:));
%! assert( U1(1,:), U2, 1e-5 );
%! assert( R1(1,:), R2, 1e-5 );
%! assert( Q1(1,:), Q2, 1e-5 );
%! assert( X1(1,:), X2, 1e-5 );
## This is example 5(b) page 7 of
## http://docs.lib.purdue.edu/cstech/259/
## "Testing network-of-queues software", technical report CSD-TR 330,
%!test
%! Z = [1 15];
%! V = [1; 1];
%! S = [.025; .5];
%! N = [15; 5];
%! [U R Q X] = qncmmva(N, S, V, 1, Z);
%! assert( U, [.358; .157], 1e-3 );
%! assert( Q, [.677; .293], 1e-3 );
%! assert( X, [14.323; .314], 1e-3 ); ## NOTE: X(1,1) = 14.3 in Schwetman
%! assert( R, [.047; .934], 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## This is example of Figure 6, page 9 of
## http://docs.lib.purdue.edu/cstech/259/
## "Testing network-of-queues software", technical report CSD-TR 330,
%!test
%! C = 2;
%! K = 6;
%! P = zeros(C,K,C,K);
%! P(1,1,1,2) = P(2,1,2,2) = 1;
%! P(1,2,1,3) = P(1,2,1,4) = P(1,2,1,5) = P(1,2,1,6) = .25;
%! P(2,2,2,3) = P(2,2,2,4) = P(2,2,2,5) = P(2,2,2,6) = .25;
%! P(1,3,1,1) = P(1,4,1,1) = P(1,5,1,1) = P(1,6,1,1) = .9;
%! P(1,3,1,2) = P(1,4,1,2) = P(1,5,1,2) = P(1,6,1,2) = .1;
%! P(2,3,2,1) = P(2,4,2,1) = P(2,5,2,1) = P(2,6,2,1) = .05;
%! P(2,3,2,2) = P(2,4,2,2) = P(2,5,2,2) = P(2,6,2,2) = .95;
%! N = [40 4];
%! S = [ 5.0 .010 .035 .035 .035 .035; ...
%! 10.0 .100 .035 .035 .035 .035 ];
%! V = qncmvisits(P);
%! [U R Q X] = qncmmva(N, S, V, [-1 1 1 1 1 1]);
%! # The results below were computed with JMVA; the numbers
%! # in the paper appears to be incorrect.
%! assert( U, [39.457941 0.087684 0.076724 0.076724 0.076724 0.076724; ...
%! 2.772704 0.554541 0.048522 0.048522 0.048522 0.048522 ], 1e-5 );
%! assert( R.*V, [5 0.024363 0.011081 0.011081 0.011081 0.011081; ...
%! 10 3.636155 0.197549 0.197549 0.197549 0.197549 ], 1e-5 );
%! assert( Q(:,1), [39.457941 2.772704]', 1e-5 );
%! assert( Q(:,2), [0.192262 1.008198]', 1e-5 );
%! assert( Q(:,3), [0.087449 0.054775]', 1e-5 );
%! assert( Q(:,4), Q(:,5), 1e-5 );
%! assert( Q(:,5), Q(:,6), 1e-5 );
%! assert( X(:,1), [7.891588 0.277270]', 1e-5 );
%! assert( X(:,2), [8.768431 5.545407]', 1e-5 );
%! assert( X(:,3), [2.192108 1.386352]', 1e-5 );
%! assert( X(:,4), X(:,5), 1e-5 );
%! assert( X(:,5), X(:,6), 1e-5 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## If there is no class switching, we must get the same results as
## the plain application of multiclass MVA
%!test
%! C = 2; # two classes
%! K = 4; # four servers
%! C = 2; K = 4;
%! P = zeros(C,K,C,K);
%! S = zeros(C,K);
%!
%! # Routing
%!
%! # class 1 routing
%! P(1,1,1,1) = .05;
%! P(1,1,1,2) = .45;
%! P(1,1,1,3) = .5;
%! P(1,2,1,1) = 1;
%! P(1,3,1,1) = 1;
%! # class 2 routing
%! P(2,1,2,1) = .01;
%! P(2,1,2,3) = .5;
%! P(2,1,2,4) = .49;
%! P(2,3,2,1) = 1;
%! P(2,4,2,1) = 1;
%!
%! # Compute visits
%!
%! V = qncmvisits(P);
%!
%! # Define population and service times
%!
%! N = [3 2];
%! S = [0.01 0.09 0.10 0.08; ...
%! 0.05 0.09 0.10 0.08];
%! [U1 R1 Q1 X1] = qncmmva(N,S,V); # this invokes __qncmmva_nocs
%! [U2 R2 Q2 X2] = qncmmva(N,S,P); # this invokes __qncmmva_cs
%! assert( U2, U1, 1e-5 );
%! assert( R2, R1, 1e-5 );
%! assert( Q2, Q1, 1e-5 );
%! assert( X2, X1, 1e-5 );
## Example from table 5, p. 23, Herb Schwetman, "Implementing the Mean
## Value Algorith for the Solution of Queueing Network Models",
## Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
## University, feb 15, 1982.
%!test
%! S = [1 0 .025; 0 15 .5];
%! V = [1 0 1; 0 1 1];
%! N = [15 5];
%! m = [-1 -1 1];
%! [U R Q X] = qncmmva(N,S,V,m);
%! assert( U, [14.323 0 .358; 0 4.707 .157], 1e-3 );
%! assert( R, [1.0 0 .047; 0 15 .934], 1e-3 );
%! assert( Q, [14.323 0 .677; 0 4.707 .293], 1e-3 );
%! assert( X, [14.323 0 14.323; 0 .314 .314], 1e-3 );
## Same test as above, but using routing probabilities instead of
## visits. Also, reordered the nodes such that server 1 is the PS node
## labeled "Sys 3" in the example; server 2 is the IS labeled "APL1" and
## server e is the IS labeled "IMS2"
%!test
%! S = [.025 1 15; .5 1 15 ];
%! P = zeros(2,3,2,3);
%! P(1,1,1,2) = P(1,2,1,1) = 1;
%! P(2,1,2,3) = P(2,3,2,1) = 1;
%! N = [15 5];
%! m = [1 -1 -1];
%! r = [1 1]; # reference station is station 1
%! [U R Q X] = qncmmva(N,S,P,r,m);
%! # I replaced 14.3->14.323
%! assert( U, [0.358 14.323 0; 0.156 0 4.707], 1e-3 );
%! # I replaced 14.3->14.323
%! assert( X, [14.323 14.3230 0; .314 0 .314 ], 1e-3 );
%! # I replaced 14.3->14.323
%! assert( Q, [.677 14.323 0; .293 0 4.707], 1e-3 );
%! assert( R, [.047 1 15.0; .934 1 15.0], 1e-3 );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
## Example figure 9 Herb Schwetman "Implementing the Mean
## Value Algorith for the Solution of Queueing Network Models",
## Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
## University, feb 15, 1982.
%!test
%! C = 2; K = 3;
%! S = [.01 .07 .10; ...
%! .05 .07 .10 ];
%! P = zeros(C,K,C,K);
%! P(1,1,1,2) = .7;
%! P(1,1,1,3) = .2;
%! P(1,1,2,1) = .1;
%! P(2,1,2,2) = .3;
%! P(2,1,2,3) = .5;
%! P(2,1,1,1) = .2;
%! P(1,2,1,1) = P(2,2,2,1) = 1;
%! P(1,3,1,1) = P(2,3,2,1) = 1;
%! N = [3 0];
%! [U R Q X] = qncmmva(N, S, P);
%! assert( R, [.015 .133 .163; .073 .133 .163], 1e-3 );
%! assert( X, [12.609 8.826 2.522; 6.304 1.891 3.152], 1e-3 );
%! assert( Q, [.185 1.175 .412; .462 .252 .515], 1e-3 );
%! assert( U, [.126 .618 .252; .315 .132 .315], 1e-3 );
## Example from Schwetman (figure 7, page 9 of
## http://docs.lib.purdue.edu/cstech/259/
## "Testing network-of-queues software, technical report CSD-TR 330,
## Purdue University). Note that the results for that network (table 9
## of the reference above) seems to be wrong. The "correct" results
## below have been computed using the multiclass MVA implementation of
## JMT (http://jmt.sourceforge.net/)
%!test
%! V = [ 1.00 0.45 0.50 0.00; ...
%! 1.00 0.00 0.50 0.49 ];
%! N = [3 2];
%! S = [0.01 0.09 0.10 0.08; ...
%! 0.05 0.09 0.10 0.08];
%! [U R Q X] = qncmmva(N, S, V);
%! assert( U, [ 0.1215 0.4921 0.6075 0.0000; ...
%! 0.3433 0.0000 0.3433 0.2691 ], 1e-4 );
%! assert( Q, [ 0.2131 0.7539 2.0328 0.0000; ...
%! 0.5011 0.0000 1.1839 0.3149 ], 1e-4 );
%! assert( R.*V, [0.0175 0.0620 0.1672 0.0000; ...
%! 0.0729 0.0000 0.1724 0.0458 ], 1e-4 );
%! assert( X, [12.1517 5.4682 6.0758 0.0000; ...
%! 6.8669 0.0000 3.4334 3.3648 ], 1e-4 );
## The following test case was used in a bug report from F. Paolieri. It
## consists of a three-class network with four nodes. There is just
## one job for each class n; that job visits node 1 and node 1+n.
## Singe service times at nodes 2:4 are all the same, and service time
## at node 1 is class-independent, we expect that all performance
## measures for nodes 2:4 are equal.
%!test
%! N = [1 1 1];
%! S = [0.20000 0.02000 0.00000 0.00000;
%! 0.20000 0.00000 0.02000 0.00000;
%! 0.20000 0.00000 0.00000 0.02000];
%! V = [1 1 0 0;
%! 1 0 1 0;
%! 1 0 0 1];
%! [U R Q X] = qncmmva(N,S,V);
%! assert( Q(1,2), Q(2,3), 1e-5);
%! assert( Q(2,3), Q(3,4), 1e-5);
%! assert( abs(max(Q(:,1)) - min(Q(:,1))) < 1e-5 );
## This example is from G. Casale and G. Serazzi. Quantitative system
## evaluation with java modeling tools. In Proceedings of the second
## joint WOSP/SIPEW international conference on Performance engineering,
## ICPE '11, pages 449-454, New York, NY, USA, 2011. ACM
%!demo
%! Ntot = 100; # total population size
%! b = linspace(0.1,0.9,10); # fractions of class-1 requests
%! S = [20 80 31 14 23 12; ...
%! 90 30 33 20 14 7];
%! V = ones(size(S));
%! X1 = X1 = XX = zeros(size(b));
%! R1 = R2 = RR = zeros(size(b));
%! for i=1:length(b)
%! N = [fix(b(i)*Ntot) Ntot-fix(b(i)*Ntot)];
%! # printf("[%3d %3d]\n", N(1), N(2) );
%! [U R Q X] = qncmmva( N, S, V );
%! X1(i) = X(1,1) / V(1,1);
%! X2(i) = X(2,1) / V(2,1);
%! XX(i) = X1(i) + X2(i);
%! R1(i) = dot(R(1,:), V(1,:));
%! R2(i) = dot(R(2,:), V(2,:));
%! RR(i) = Ntot / XX(i);
%! endfor
%! subplot(2,1,1);
%! plot(b, X1, ";Class 1;", "linewidth", 2, ...
%! b, X2, ";Class 2;", "linewidth", 2, ...
%! b, XX, ";System;", "linewidth", 2 );
%! legend("location","south"); legend("boxoff");
%! ylabel("Throughput");
%! subplot(2,1,2);
%! plot(b, R1, ";Class 1;", "linewidth", 2, ...
%! b, R2, ";Class 2;", "linewidth", 2, ...
%! b, RR, ";System;", "linewidth", 2 );
%! legend("location","south"); legend("boxoff");
%! xlabel("Population mix \\beta for Class 1");
%! ylabel("Resp. Time");
%!demo
%! S = [1 0 .025; 0 15 .5];
%! P = zeros(2,3,2,3);
%! P(1,1,1,3) = P(1,3,1,1) = 1;
%! P(2,2,2,3) = P(2,3,2,2) = 1;
%! V = qncmvisits(P,[3 3]); # reference station is station 3
%! N = [15 5];
%! m = [-1 -1 1];
%! [U R Q X] = qncmmva(N,S,V,m)
## Example shown on Figure 9: Herb Schwetman, "Implementing the Mean
## Value Algorith for the Solution of Queueing Network Models",
## Technical Report CSD-TR-355, Department of Computer Sciences, Purdue
## University, feb 15, 1982.
%!demo
%! C = 2; K = 3;
%! S = [.01 .07 .10; ...
%! .05 .07 .10 ];
%! P = zeros(C,K,C,K);
%! P(1,1,1,2) = .7; P(1,1,1,3) = .2; P(1,1,2,1) = .1;
%! P(2,1,2,2) = .3; P(2,1,2,3) = .5; P(2,1,1,1) = .2;
%! P(1,2,1,1) = P(2,2,2,1) = 1;
%! P(1,3,1,1) = P(2,3,2,1) = 1;
%! N = [3 0];
%! [U R Q X] = qncmmva(N, S, P)
%!demo
%! S = [10 7 5 4;
%! 5 2 4 6];
%! NN = 100;
%! Xl_aba = Xu_aba = Xl_bsb = Xu_bsb = Xl_cb = Xu_cb = Xmva = Rmva = zeros(NN,2);
%! for n=1:NN
%! N=[n,10];
%! [a b] = qncmaba(N,S);
%! Xl_aba(n,:) = a; Xu_aba(n,:) = b;
%! [a b] = qncmbsb(N,S);
%! Xl_bsb(n,:) = a; Xu_bsb(n,:) = b;
%! [a b] = qncmcb(N,S);
%! Xl_cb(n,:) = a; Xu_cb(n,:) = b;
%! [U R Q X] = qncmmva(N,S,ones(size(S)));
%! Xmva(n,:) = X(:,1)';
%! endfor
%! subplot(1,2,1);
%! plot(1:NN, Xl_aba(:,1), "--k",
%! 1:NN, Xu_aba(:,1), "--k;ABA;",
%! 1:NN, Xu_bsb(:,1), ":k;BSB;",
%! 1:NN, Xl_cb(:,1), "-.k",
%! 1:NN, Xu_cb(:,1), "-.k;CB;",
%! 1:NN, Xmva(:,1), "k;MVA;", "linewidth", 2);
%! xlabel("N. of requests");
%! ylim([0, 0.2]);
%! title("Class 1 throughput"); legend("boxoff");
%! subplot(1,2,2);
%! plot(1:NN, Xl_aba(:,2), "--k",
%! 1:NN, Xu_aba(:,2), "--k;ABA;",
%! 1:NN, Xu_bsb(:,2), ":k;BSB;",
%! 1:NN, Xl_cb(:,2), "-.k",
%! 1:NN, Xu_cb(:,2), "-.k;CB;",
%! 1:NN, Xmva(:,2), "-k;MVA;", "linewidth", 2);
%! xlabel("N. of requests");
%! ylim([0, 0.2]);
%! title("Class 2 throughput");
%! legend("boxoff");
%! legend("location", "east");
|