1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018, 2020 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {pop_mix =} qncmpopmix (@var{k}, @var{N})
##
## @cindex population mix
## @cindex closed network, multiple classes
##
## Return the set of population mixes for a closed multiclass queueing
## network with exactly @var{k} customers. Specifically, given a
## closed multiclass QN with @math{C} customer classes, where there
## are @code{@var{N}(c)} class @math{c} requests, @math{c = 1, @dots{}, C}
## a @math{k}-mix @math{M} is a vector of length @math{C} with the following
## properties:
##
## @itemize
## @item @math{0 @leq{} M_c @leq{} @var{N}(c)} for all @math{c = 1, @dots{}, C};
## @item @math{\sum_{c=1}^C M_c = k}
## @end itemize
##
## In other words, a @math{k}-mix is an allocation of @math{k}
## requests to @math{C} classes such that the number of requests
## assigned to class @math{c} does not exceed the maximum value
## @code{@var{N}(c)}.
##
## @var{pop_mix} is a matrix with @math{C} columns, such
## that each row represents a valid mix.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{k}
## Size of the requested mix (scalar, @code{@var{k} @geq{} 0}).
##
## @item @var{N}(c)
## number of class @math{c} requests (@code{@var{k} @leq{} sum(@var{N})}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{pop_mix}(i,c)
## number of class @math{c} requests in the @math{i}-th population
## mix. The number of mixes is @code{rows(@var{pop_mix})}.
##
## @end table
##
## If you are interested in the number of @math{k}-mixes only, you can
## use the funcion @code{qnmvapop}.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## Herb Schwetman, @cite{Implementing the Mean Value Algorithm for the
## Solution of Queueing Network Models}, Technical Report
## @uref{http://docs.lib.purdue.edu/cstech/286/, 80-355}, Department of Computer
## Sciences, Purdue University, revised February 15, 1982.
## @end itemize
##
## The slightly different problem of enumerating all tuples @math{k_1,
## @dots{}, k_N} such that @math{\sum_i k_i = k} and @math{k_i
## @geq{} 0}, for a given @math{k @geq{} 0} has been described in
## S. Santini, @cite{Computing the Indices for a Complex Summation},
## unpublished report, available at
## @url{http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf}
##
## @seealso{qncmnpop}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function pop_mix = qncmpopmix( k, population )
if ( nargin != 2 )
print_usage();
endif
isvector( population ) && all( population>=0 ) || ...
error( "N must be an array >=0" );
R = length(population); # number of classes
( isscalar(k) && k >= 0 && k <= sum(population) ) || ...
error( "valid range for k is [0, %d]", sum(population));
N = zeros(1, R);
const = min(k, population);
mp = 0;
pop_mix = []; # Init result
while ( N(R) <= const(R) )
x=k-mp;
## Fill the current configuration
i=1;
while ( x>0 && i<=R )
N(i) = min(x,const(i));
x = x-N(i);
mp = mp+N(i);
i = i+1;
endwhile
## here the configuration is filled. add it to the set of mixes
assert( sum(N), k );
pop_mix = [pop_mix; N];
## advance to the next feasible configuration
i = 1;
sw = true;
while sw
if ( ( mp==k || N(i)==const(i)) && ( i<R ) )
mp = mp-N(i);
N(i) = 0;
i=i+1;
else
N(i)=N(i)+1;
mp=mp+1;
sw = false;
endif
endwhile
endwhile
endfunction
%!demo
%! N = [2 3];
%! mix = qncmpopmix(3, N)
%!test
%! N = [-1 2 2];
%! fail( "qncmpopmix(1, N)" );
%!test
%! N = [2 2 2];
%! fail( "qncmpopmix(7, N)" );
%!test
%! N = [2 3 4];
%! f = qncmpopmix(0, N );
%! assert( f, [0 0 0] );
%! f = qncmpopmix( 1, N );
%! assert( f, [1 0 0; 0 1 0; 0 0 1] );
%! f = qncmpopmix( 2, N );
%! assert( f, [2 0 0; 1 1 0; 0 2 0; 1 0 1; 0 1 1; 0 0 2] );
%! f = qncmpopmix( 3, N );
%! assert( f, [2 1 0; 1 2 0; 0 3 0; 2 0 1; 1 1 1; 0 2 1; 1 0 2; 0 1 2; 0 0 3] );
%!test
%! N = [2 1];
%! f = qncmpopmix( 1, N );
%! assert( f, [1 0; 0 1] );
%! f = qncmpopmix( 2, N );
%! assert( f, [2 0; 1 1] );
|