1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2016, 2018, 2020, 2021 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V}, @var{m})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{G}] =} qncsmva (@var{N}, @var{S}, @var{V}, @var{m}, @var{Z})
##
## @cindex Mean Value Analysys (MVA)
## @cindex closed network, single class
## @cindex normalization constant
##
## Analyze closed, single class queueing networks using the exact Mean Value Analysis (MVA) algorithm.
##
## The following queueing disciplines are supported: FCFS, LCFS-PR, PS
## and IS (Infinite Server). This function supports fixed-rate service
## centers or multiple server nodes. For general load-dependent service
## centers, use the function @code{qncsmvald} instead.
##
## Additionally, the normalization constant @math{G(n)}, @math{n=0,
## @dots{}, N} is computed; @math{G(n)} can be used in conjunction with
## the BCMP theorem to compute steady-state probabilities.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## Population size (number of requests in the system, @code{@var{N} @geq{} 0}).
## If @code{@var{N} == 0}, this function returns
## @code{@var{U} = @var{R} = @var{Q} = @var{X} = 0}
##
## @item @var{S}(k)
## mean service time at center @math{k} (@code{@var{S}(k) @geq{} 0}).
##
## @item @var{V}(k)
## average number of visits to service center @math{k} (@code{@var{V}(k) @geq{} 0}).
##
## @item @var{Z}
## External delay for customers (@code{@var{Z} @geq{} 0}). Default is 0.
##
## @item @var{m}(k)
## number of servers at center @math{k} (if @var{m} is a scalar, all
## centers have that number of servers). If @code{@var{m}(k) < 1},
## center @math{k} is a delay center (IS); otherwise it is a regular
## queueing center (FCFS, LCFS-PR or PS) with @code{@var{m}(k)}
## servers. Default is @code{@var{m}(k) = 1} for all @math{k} (each
## service center has a single server).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## If @math{k} is a FCFS, LCFS-PR or PS node (@code{@var{m}(k) @geq{}
## 1}), then @code{@var{U}(k)} is the utilization of center @math{k},
## @math{0 @leq{} U(k) @leq{} 1}. If @math{k} is an IS node
## (@code{@var{m}(k) < 1}), then @code{@var{U}(k)} is the @emph{traffic
## intensity} defined as @code{@var{X}(k)*@var{S}(k)}. In this case the
## value of @code{@var{U}(k)} may be greater than one.
##
## @item @var{R}(k)
## center @math{k} response time. The @emph{Residence Time} at center
## @math{k} is @code{@var{R}(k) * @var{V}(k)}. The system response
## time @var{Rsys} can be computed either as @code{@var{Rsys} =
## @var{N}/@var{Xsys} - Z} or as @code{@var{Rsys} =
## dot(@var{R},@var{V})}
##
## @item @var{Q}(k)
## average number of requests at center @math{k}. The number of
## requests in the system can be computed either as
## @code{sum(@var{Q})}, or using the formula
## @code{@var{N}-@var{Xsys}*@var{Z}}.
##
## @item @var{X}(k)
## center @math{K} throughput. The system throughput @var{Xsys} can be
## computed as @code{@var{Xsys} = @var{X}(1) / @var{V}(1)}
##
## @item @var{G}(n)
## Normalization constants. @code{@var{G}(n+1)} contains the value of
## the normalization constant @math{G(n)}, @math{n=0, @dots{}, N} as
## array indexes in Octave start from 1. @math{G(n)} can be used in
## conjunction with the BCMP theorem to compute steady-state
## probabilities.
##
## @end table
##
## @strong{NOTES}
##
## In presence of load-dependent servers (i.e., if @code{@var{m}(k)>1}
## for some @math{k}), the MVA algorithm is known to be numerically
## unstable. Generally, this issue manifests itself as negative values
## for the response times or utilizations. This is not a problem of
## the @code{queueing} toolbox, but of the MVA algorithm, and has
## currently no known solution. This function prints a warning if
## numerical problems are detected; the warning can be disabled with
## the command @code{warning("off", "qn:numerical-instability")}.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
## Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2, April
## 1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
## @end itemize
##
## This implementation is described in R. Jain , @cite{The Art of
## Computer Systems Performance Analysis}, Wiley, 1991, p. 577.
## Multi-server nodes are treated according to G. Bolch, S. Greiner,
## H. de Meer and K. Trivedi, @cite{Queueing Networks and Markov Chains:
## Modeling and Performance Evaluation with Computer Science
## Applications}, Wiley, 1998, Section 8.2.1, "Single Class Queueing
## Networks".
##
## @seealso{qncsmvald,qncscmva}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X G] = qncsmva( varargin )
if ( nargin < 3 || nargin > 5 )
print_usage();
endif
[err N S V m Z] = qncschkparam( varargin{:} );
isempty(err) || error(err);
K = length(S); # Number of servers
U = R = Q = X = zeros( 1, K );
G = zeros(1,N+1); G(1) = 1;
if ( N == 0 ) # Trivial case of empty population: just return all zeros
return;
endif
i_single = find( m==1 );
i_multi = find( m>1 );
i_delay = find( m<1 );
## Initialize results
if ( length(i_multi)>0 )
p = zeros( K, max(m)+1 ); # p(i,j+1) is the probability that there are j jobs at server i
p(:,1) = 1;
endif
X_s = 0; # System throughput
## Main MVA loop, iterates over the population size
for n=1:N
R(i_single) = S(i_single) .* (1 + Q(i_single));
for i=i_multi # I cannot easily vectorize this
j=0:m(i)-2;
R(i) = S(i) / m(i) * (1+Q(i)+dot( m(i)-j-1, p( i, 1+j ) ) );
endfor
R(i_delay) = S(i_delay);
R_s = dot( V, R ); # System response time
X_s = n / ( Z + R_s ); # System Throughput
Q = X_s * ( V .* R );
G(1+n) = G(n) / X_s;
## prepare for next iteration
lambda_i = V * X_s; # lambda_i(i) is the node i throughput
for i=i_multi
j=1:m(i)-1; # range
p(i, j+1) = lambda_i(i) .* S(i) ./ min( j,m(i) ) .* p(i,j);
p(i,1) = 1 - 1/m(i) * ...
(V(i)*S(i)*X_s + dot( m(i)-j, p(i,j+1)) );
endfor
endfor
X = X_s * V; # Service centers throughput
U(i_single) = X(i_single) .* S(i_single);
U(i_delay) = X(i_delay) .* S(i_delay);
U(i_multi) = X(i_multi) .* S(i_multi) ./ m(i_multi);
if ( any(U<0) || any(R<0) )
warning("qn:numerical-instability",
"Numerical instability detected. Type 'help qncsmva' for details");
endif
endfunction
#{
## This function is slightly faster (and more compact) than the above
## when all servers are single-server or delay centers. Improvements are
## quite small (10%-15% faster, depends on the network size), so at the
## moment it is commented out.
function [U R Q X G] = __qncsmva_fast( N, S, V, m, Z )
U = R = Q = X = zeros( 1, length(S) );
X_s = 0; # System throughput
G = zeros(1,N+1); G(1) = 1;
## Main MVA loop
for n=1:N
R = S .* (1+Q.*(m==1));
R_s = dot( V, R ); # System response time
X_s = n / ( Z + R_s ); # System Throughput
Q = X_s * ( V .* R );
G(1+n) = G(n) / X_s;
endfor
X = X_s * V; # Service centers throughput
U = X .* S;
endfunction
#}
%!test
%! fail( "qncsmva()", "Invalid" );
%! fail( "qncsmva( 10, [1 2], [1 2 3] )", "incompatible size" );
%! fail( "qncsmva( 10, [-1 1], [1 1] )", "nonnegative" );
%! fail( "qncsmva( 10.3, [-1 1], [1 1] )", "integer" );
%! fail( "qncsmva( -0.3, [-1 1], [1 1] )", "nonnegative" );
## Check if networks with only one type of server are handled correctly
%!test
%! qncsmva(1,1,1,1);
%! qncsmva(1,1,1,-1);
%! qncsmva(1,1,1,2);
%! qncsmva(1,[1 1],[1 1],[-1 -1]);
%! qncsmva(1,[1 1],[1 1],[1 1]);
%! qncsmva(1,[1 1],[1 1],[2 2]);
## Check degenerate case of N==0 (LI case)
%!test
%! N = 0;
%! S = [1 2 3 4];
%! V = [1 1 1 4];
%! [U R Q X] = qncsmva(N, S, V);
%! assert( U, 0*S );
%! assert( R, 0*S );
%! assert( Q, 0*S );
%! assert( X, 0*S );
## Check degenerate case of N==0 (LD case)
%!test
%! N = 0;
%! S = [1 2 3 4];
%! V = [1 1 1 4];
%! m = [2 3 4 5];
%! [U R Q X] = qncsmva(N, S, V, m);
%! assert( U, 0*S );
%! assert( R, 0*S );
%! assert( Q, 0*S );
%! assert( X, 0*S );
%!test
%! # Exsample 3.42 p. 577 Jain
%! S = [ 0.125 0.3 0.2 ]';
%! V = [ 16 10 5 ];
%! N = 20;
%! m = ones(1,3)';
%! Z = 4;
%! [U R Q X] = qncsmva(N,S,V,m,Z);
%! assert( R, [ .373 4.854 .300 ], 1e-3 );
%! assert( Q, [ 1.991 16.177 0.500 ], 1e-3 );
%! assert( all( U>=0 ) );
%! assert( all( U<=1 ) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
%!test
%! # Exsample 3.42 p. 577 Jain
%! S = [ 0.125 0.3 0.2 ];
%! V = [ 16 10 5 ];
%! N = 20;
%! m = ones(1,3);
%! Z = 4;
%! [U R Q X] = qncsmva(N,S,V,m,Z);
%! assert( R, [ .373 4.854 .300 ], 1e-3 );
%! assert( Q, [ 1.991 16.177 0.500 ], 1e-3 );
%! assert( all( U>=0 ) );
%! assert( all( U<=1 ) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
%!test
%! # Example 8.4 p. 333 Bolch et al.
%! S = [ .5 .6 .8 1 ];
%! N = 3;
%! m = [2 1 1 -1];
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qncsmva(N,S,V,m);
%! assert( Q, [ 0.624 0.473 0.686 1.217 ], 1e-3 );
%! assert( X, [ 1.218 0.609 0.609 1.218 ], 1e-3 );
%! assert( all(U >= 0 ) );
%! assert( all(U( m>0 ) <= 1 ) );
%! assert( Q, R.*X, 1e-5 ); # Little's Law
%!test
%! # Example 8.3 p. 331 Bolch et al.
%! # This is a single-class network, which however nothing else than
%! # a special case of multiclass network
%! S = [ 0.02 0.2 0.4 0.6 ];
%! K = 6;
%! V = [ 1 0.4 0.2 0.1 ];
%! [U R Q X] = qncsmva(K, S, V);
%! assert( U, [ 0.198 0.794 0.794 0.595 ], 1e-3 );
%! assert( R, [ 0.025 0.570 1.140 1.244 ], 1e-3 );
%! assert( Q, [ 0.244 2.261 2.261 1.234 ], 1e-3 );
%! assert( X, [ 9.920 3.968 1.984 0.992 ], 1e-3 );
%!test
%! # Check bound analysis
%! N = 10; # max population
%! for n=1:N
%! S = [1 0.8 1.2 0.5];
%! V = [1 2 2 1];
%! [U R Q X] = qncsmva(n, S, V);
%! Xs = X(1)/V(1);
%! Rs = dot(R,V);
%! # Compare with balanced system bounds
%! [Xlbsb Xubsb Rlbsb Rubsb] = qncsbsb( n, S .* V );
%! assert( Xlbsb<=Xs );
%! assert( Xubsb>=Xs );
%! assert( Rlbsb<=Rs );
%! assert( Rubsb>=Rs );
%! # Compare with asymptotic bounds
%! [Xlab Xuab Rlab Ruab] = qncsaba( n, S .* V );
%! assert( Xlab<=Xs );
%! assert( Xuab>=Xs );
%! assert( Rlab<=Rs );
%! assert( Ruab>=Rs );
%! endfor
%!demo
%! S = [ 0.125 0.3 0.2 ];
%! V = [ 16 10 5 ];
%! N = 20;
%! m = ones(1,3);
%! Z = 4;
%! [U R Q X] = qncsmva(N,S,V,m,Z);
%! X_s = X(1)/V(1); # System throughput
%! R_s = dot(R,V); # System response time
%! printf("\t Util Qlen RespT Tput\n");
%! printf("\t-------- -------- -------- --------\n");
%! for k=1:length(S)
%! printf("Dev%d\t%8.4f %8.4f %8.4f %8.4f\n", k, U(k), Q(k), R(k), X(k) );
%! endfor
%! printf("\nSystem\t %8.4f %8.4f %8.4f\n\n", N-X_s*Z, R_s, X_s );
%!demo
%! SA = [300 40];
%! p = .9; P = [ 0 1; 1-p p ];
%! VA = qncsvisits(P);
%! SB = [300 30];
%! p = .75; P = [ 0 1; 1-p p ];
%! VB = qncsvisits(P);
%! Z = 1800;
%! NN = 1:100;
%! XA = XB = XA_mva = XB_mva = zeros(size(NN));
%! for n=NN
%! [nc XA(n)] = qncsbsb(n, SA, VA, 1, Z);
%! [U R Q X] = qncsmva(n, SA, VA, 1, Z);
%! XA_mva(n) = X(1)/VA(1);
%! [nc XB(n)] = qncsbsb(n, SB, VB, 1, Z);
%! [U R Q X] = qncsmva(n, SB, VB, 1, Z);
%! XB_mva(n) = X(1)/VB(1);
%! endfor
%! plot(NN, XA, ":k", "linewidth", 1,
%! NN, XA_mva, "-b", "linewidth", 1,
%! NN, XB, ":k", "linewidth", 1,
%! NN, XB_mva, "-r", "linewidth", 1);
%! idx = 40;
%! displ = 2e-4;
%! text( NN(idx), XA(idx)-displ, "A) Large cache of slow disks");
%! text( NN(idx), XB(idx)+displ, "B) Small cache of fast disks");
%! ax = axis();
%! ax(3) = 0;
%! ax(4) = 1.2*max([XA XB]);
%! axis(ax);
%! xlabel("Number of jobs");
%! ylabel("System throughput (jobs/s)");
|