1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
## Copyright (C) 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvald (@var{N}, @var{S}, @var{V})
## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qncsmvald (@var{N}, @var{S}, @var{V}, @var{Z})
##
## @cindex Mean Value Analysys (MVA)
## @cindex MVA
## @cindex closed network, single class
## @cindex load-dependent service center
##
## Mean Value Analysis algorithm for closed, single class queueing
## networks with @math{K} service centers and load-dependent service
## times. This function supports FCFS, LCFS-PR, PS and IS nodes. For
## networks with only fixed-rate centers and multiple-server
## nodes, the function @code{qncsmva} is more efficient.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{N}
## Population size (number of requests in the system, @code{@var{N} @geq{} 0}).
## If @code{@var{N} == 0}, this function returns @code{@var{U} = @var{R} = @var{Q} = @var{X} = 0}
##
## @item @var{S}(k,n)
## mean service time at center @math{k}
## where there are @math{n} requests, @math{1 @leq{} n
## @leq{} N}. @code{@var{S}(k,n)} @math{= 1 / \mu_{k}(n)},
## where @math{\mu_{k}(n)} is the service rate of center @math{k}
## when there are @math{n} requests.
##
## @item @var{V}(k)
## average number of visits to service center @math{k} (@code{@var{V}(k) @geq{} 0}).
##
## @item @var{Z}
## external delay ("think time", @code{@var{Z} @geq{} 0}); default 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}(k)
## utilization of service center @math{k}. The
## utilization is defined as the probability that service center
## @math{k} is not empty, that is, @math{U_k = 1-\pi_k(0)} where
## @math{\pi_k(0)} is the steady-state probability that there are 0
## jobs at service center @math{k}.
##
## @item @var{R}(k)
## response time on service center @math{k}.
##
## @item @var{Q}(k)
## average number of requests in service center @math{k}.
##
## @item @var{X}(k)
## throughput of service center @math{k}.
##
## @end table
##
## @strong{NOTES}
##
## In presence of load-dependent servers, the MVA algorithm is known
## to be numerically unstable. Generally this problem manifests itself
## as negative response times or utilization.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## M. Reiser and S. S. Lavenberg, @cite{Mean-Value Analysis of Closed
## Multichain Queuing Networks}, Journal of the ACM, vol. 27, n. 2,
## April 1980, pp. 313--322. @uref{http://doi.acm.org/10.1145/322186.322195, 10.1145/322186.322195}
## @end itemize
##
## This implementation is described in G. Bolch, S. Greiner, H. de Meer
## and K. Trivedi, @cite{Queueing Networks and Markov Chains: Modeling
## and Performance Evaluation with Computer Science Applications}, Wiley,
## 1998, Section 8.2.4.1, ``Networks with Load-Dependent Service: Closed
## Networks''.
##
## @seealso{qncsmva}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U R Q X] = qncsmvald( N, S, V, Z )
if ( nargin < 3 || nargin > 4 )
print_usage();
endif
isvector(V) && all(V>=0) || ...
error( "V must be a vector >= 0" );
V = V(:)'; # make V a row vector
K = length(V); # Number of servers
isscalar(N) && N >= 0 || ...
error( "N must be >= 0" );
( ismatrix(S) && rows(S) == K && columns(S) >= N ) || ...
error( "S size mismatch: is %dx%d, should be %dx%d", rows(S), columns(S), K, N );
all(S(:)>=0) || ...
error( "S must be >= 0" );
if ( nargin < 4 )
Z = 0;
else
isscalar(Z) && Z>=0 || ...
error( "Z must be >= 0" );
endif
## Initialize results
p = zeros( K, N+1 ); # p(k,i+1) is the probability that there are i jobs at server k, given that the network population is j
p(:,1) = 1;
U = R = Q = X = zeros( 1, K );
X_s = 0; # System throughput
## Main MVA loop, iterates over the population size
for n=1:N # over population size
j=1:n;
## for i=1:K
## R(i) = sum( j.*S(i,j).*p(i,j) );
## endfor
R = sum( repmat(j,K,1).*S(:,1:n).*p(:,1:n), 2)';
R_s = dot( V, R ); # System response time
X_s = n / (Z+R_s); # System Throughput
## G_N = G_Nm1 / X_s; G_Nm1 = G_N;
## prepare for next iteration
for i=1:K
p(i, 1+j) = X_s * S(i,j) .* p(i,j) * V(i);
p(i, 1) = 1-sum(p(i,1+j));
endfor
endfor
Q = X_s * ( V .* R );
U = 1-p(:,1)'; # Service centers utilization
X = X_s * V; # Service centers throughput
endfunction
## Check degenerate case of N==0 (general LD case)
%!test
%! N = 0;
%! S = [1 2; 3 4; 5 6; 7 8];
%! V = [1 1 1 4];
%! [U R Q X] = qncsmvald(N, S, V);
%! assert( U, 0*V );
%! assert( R, 0*V );
%! assert( Q, 0*V );
%! assert( X, 0*V );
%!test
%! # Exsample 3.42 p. 577 Jain
%! V = [ 16 10 5 ];
%! N = 20;
%! S = [ 0.125 0.3 0.2 ];
%! Sld = repmat( S', 1, N );
%! Z = 4;
%! [U1 R1 Q1 X1] = qncsmvald(N,Sld,V,Z);
%! [U2 R2 Q2 X2] = qncsmva(N,S,V,ones(1,3),Z);
%! assert( U1, U2, 1e-3 );
%! assert( R1, R2, 1e-3 );
%! assert( Q1, Q2, 1e-3 );
%! assert( X1, X2, 1e-3 );
%!test
%! # Example 8.7 p. 349 Bolch et al.
%! N = 3;
%! Sld = 1 ./ [ 2 4 4; ...
%! 1.667 1.667 1.667; ...
%! 1.25 1.25 1.25; ...
%! 1 2 3 ];
%! V = [ 1 .5 .5 1 ];
%! [U R Q X] = qncsmvald(N,Sld,V);
%! assert( Q, [0.624 0.473 0.686 1.217], 1e-3 );
%! assert( R, [0.512 0.776 1.127 1], 1e-3 );
%! assert( all( U<=1) );
%!test
%! # Example 8.4 p. 333 Bolch et al.
%! N = 3;
%! S = [ .5 .6 .8 1 ];
%! m = [2 1 1 N];
%! Sld = zeros(3,N);
%! Sld(1,:) = .5 ./ [1 2 2];
%! Sld(2,:) = [.6 .6 .6];
%! Sld(3,:) = [.8 .8 .8];
%! Sld(4,:) = 1 ./ [1 2 3];
%! V = [ 1 .5 .5 1 ];
%! [U1 R1 Q1 X1] = qncsmvald(N,Sld,V);
%! [U2 R2 Q2 X2] = qncsmva(N,S,V,m);
%! ## Note that qncsmvald computes the utilization in a different
%! ## way as qncsmva; in fact, qncsmva knows that service
%! ## center i has m(i)>1 servers, but qncsmvald does not. Thus,
%! ## utilizations for multiple-server nodes cannot be compared
%! assert( U1([2,3]), U2([2,3]), 1e-3 );
%! assert( R1, R2, 1e-3 );
%! assert( Q1, Q2, 1e-3 );
%! assert( X1, X2, 1e-3 );
|