1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2018, 2019, 2020 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmm1 (@var{lambda}, @var{mu})
## @deftypefnx {Function File} {@var{pk} =} qsmm1 (@var{lambda}, @var{mu}, @var{k})
##
## @cindex @math{M/M/1} system
##
## Compute utilization, response time, average number of requests and throughput for a @math{M/M/1} queue.
##
## @tex
## The steady-state probability @math{\pi_k} that there are @math{k}
## jobs in the system, @math{k \geq 0}, can be computed as:
##
## $$
## \pi_k = (1-\rho)\rho^k
## $$
##
## where @math{\rho = \lambda/\mu} is the server utilization.
##
## @end tex
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}
## Arrival rate (@code{@var{lambda} @geq{} 0}).
##
## @item @var{mu}
## Service rate (@code{@var{mu} > @var{lambda}}).
##
## @item @var{k}
## Number of requests in the system (@code{@var{k} @geq{} 0}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}
## Server utilization
##
## @item @var{R}
## Server response time
##
## @item @var{Q}
## Average number of requests in the system
##
## @item @var{X}
## Server throughput. If the system is ergodic (@code{@var{mu} >
## @var{lambda}}), we always have @code{@var{X} = @var{lambda}}
##
## @item @var{p0}
## Steady-state probability that there are no requests in the system.
##
## @item @var{pk}
## Steady-state probability that there are @var{k} requests in the system.
## (including the one being served).
##
## @end table
##
## If this function is called with less than three input parameters,
## @var{lambda} and @var{mu} can be vectors of the same size. In this
## case, the results will be vectors as well.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
## and Markov Chains: Modeling and Performance Evaluation with Computer
## Science Applications}, Wiley, 1998, Section 6.3
## @end itemize
##
## @seealso{qsmmm, qsmminf, qsmmmk}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U_or_pk R Q X p0] = qsmm1( lambda, mu, k )
if ( nargin < 2 || nargin > 3 )
print_usage();
endif
( isvector(lambda) && isvector(mu) ) || ...
error( "lambda and mu must be vectors" );
[ err lambda mu ] = common_size( lambda, mu );
if ( err )
error( "parameters are of incompatible size" );
endif
lambda = lambda(:)';
mu = mu(:)';
all( lambda >= 0 ) || error( "lambda must be >= 0" );
rho = lambda ./ mu;
all( rho < 1 ) || error( "Processing capacity exceeded" );
if (nargin == 2)
U_or_pk = rho; # utilization
p0 = 1-rho;
Q = rho ./ (1-rho);
R = 1 ./ ( mu .* (1-rho) );
X = lambda;
else
(length(lambda) == 1) || error("lambda must be a scalar if this function is called with three arguments");
isvector(k) || error("k must be a vector");
all(k>=0) || error("k must be >= 0");
k = k(:)'; # make k a row vector
U_or_pk = (1 - rho).*rho.^k;
endif
endfunction
%!test
%! fail( "qsmm1(10,5)", "capacity exceeded" );
%! fail( "qsmm1(1,1)", "capacity exceeded" );
%! fail( "qsmm1([2 2], [1 1 1])", "incompatible size");
%!test
%! [U R Q X P0] = qsmm1(0, 1);
%! assert( U, 0 );
%! assert( R, 1 );
%! assert( Q, 0 );
%! assert( X, 0 );
%! assert( P0, 1 );
%!test
%! [U R Q X P0] = qsmm1(0.2, 1.0);
%! pk = qsmm1(0.2, 1.0, 0);
%! assert(P0, pk);
%!demo
%! ## Given a M/M/1 queue, compute the steady-state probability pk
%! ## of having k requests in the systen.
%! lambda = 0.2;
%! mu = 0.25;
%! k = 0:10;
%! pk = qsmm1(lambda, mu, k);
%! plot(k, pk, "-o", "linewidth", 2);
%! xlabel("N. of requests (k)");
%! ylabel("p_k");
%! title(sprintf("M/M/1 system, \\lambda = %g, \\mu = %g", lambda, mu));
|