1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2019 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}, @var{pK}] =} qsmm1k (@var{lambda}, @var{mu}, @var{K})
## @deftypefnx {Function File} {@var{pn} =} qsmm1k (@var{lambda}, @var{mu}, @var{K}, @var{n})
##
## @cindex @math{M/M/1/K} system
##
## Compute utilization, response time, average number of requests and
## throughput for a @math{M/M/1/K} finite capacity system.
##
## In a @math{M/M/1/K} queue there is a single server and a queue with
## finite capacity: the maximum number of requests in the system
## (including the request being served) is @math{K}, and the maximum
## queue length is therefore @math{K-1}.
##
## @tex
## The steady-state probability @math{\pi_n} that there are @math{n}
## jobs in the system, @math{0 @leq{} n @leq{} K}, is:
##
## $$
## \pi_n = {(1-a)a^n \over 1-a^{K+1}}
## $$
##
## where @math{a = \lambda/\mu}.
## @end tex
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}
## Arrival rate (@code{@var{lambda}>0}).
##
## @item @var{mu}
## Service rate (@code{@var{mu}>0}).
##
## @item @var{K}
## Maximum number of requests allowed in the system (@code{@var{K} @geq{} 1}).
##
## @item @var{n}
## Number of requests in the (@code{0 @leq{} @var{n} @leq{} K}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}
## Service center utilization, which is defined as @code{@var{U} = 1-@var{p0}}
##
## @item @var{R}
## Service center response time
##
## @item @var{Q}
## Average number of requests in the system
##
## @item @var{X}
## Service center throughput
##
## @item @var{p0}
## Steady-state probability that there are no requests in the system
##
## @item @var{pK}
## Steady-state probability that there are @math{K} requests in the system
## (i.e., that the system is full)
##
## @item @var{pn}
## Steady-state probability that there are @math{n} requests in the system
## (including the one being served).
##
## @end table
##
## If this function is called with less than four arguments,
## @var{lambda}, @var{mu} and @var{K} can be vectors of the
## same size. In this case, the results will be vectors as well.
##
## @seealso{qsmm1,qsmminf,qsmmm}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U_or_pn R Q X p0 pK] = qsmm1k( lambda, mu, K, n )
if ( nargin < 3 || nargin > 4 )
print_usage();
endif
( isvector(lambda) && isvector(mu) && isvector(K) ) || ...
error( "lambda, mu, K must be vectors of the same size" );
[err lambda mu K] = common_size( lambda, mu, K );
if ( err )
error( "Parameters are not of common size" );
endif
all( K>0 ) || ...
error( "K must be >0" );
( all( lambda>0 ) && all( mu>0 ) ) || ...
error( "lambda and mu must be >0" );
a = lambda./mu;
if (nargin < 4)
U_or_pn = R = Q = X = p0 = pK = 0*lambda;
## persistent tol = 1e-7;
## if a!=1
## i = find( abs(a-1)>tol );
i = find( a != 1 );
p0(i) = (1-a(i))./(1-a(i).^(K(i)+1));
pK(i) = (1-a(i)).*(a(i).^K(i))./(1-a(i).^(K(i)+1));
Q(i) = a(i)./(1-a(i)) - (K(i)+1)./(1-a(i).^(K(i)+1)).*(a(i).^(K(i)+1));
## if a==1
## i = find( abs(a-1)<=tol );
i = find( a == 1 );
p0(i) = pK(i) = 1./(K(i)+1);
Q(i) = K(i)/2;
## Compute other performance measures
U_or_pn = 1-p0;
X = lambda.*(1-pK);
R = Q ./ X;
else
(length(lambda) == 1) || error("lambda must be a scalar if this function is called with four arguments");
isvector(n) || error("n must be a vector");
(all(n >= 0) && all(n <= K)) || error("n must be >= 0 and <= K");
n = n(:)';
if (a != 1) # we know that a must be a scalar
U_or_pn = ((1 - a) * a.^n) ./ (1 - a^(K+1));
else
U_or_pn = 1/(K+1) * ones(size(n));
endif
endif
endfunction
%!test
%! lambda = mu = 1;
%! K = 10;
%! [U R Q X p0] = qsmm1k(lambda,mu,K);
%! assert( Q, K/2, 1e-7 );
%! assert( U, 1-p0, 1e-7 );
%!test
%! lambda = 1;
%! mu = 1.2;
%! K = 10;
%! [U R Q X p0 pK] = qsmm1k(lambda, mu, K);
%! prob = qsmm1k(lambda, mu, K, 0:K);
%! assert( p0, prob(1), 1e-7 );
%! assert( pK, prob(K+1), 1e-7 );
%!test
%! # Compare the result with the equivalent Markov chain
%! lambda = 0.8;
%! mu = 0.8;
%! K = 10;
%! [U1 R1 Q1 X1] = qsmm1k( lambda, mu, K );
%! birth = lambda*ones(1,K);
%! death = mu*ones(1,K);
%! q = ctmc(ctmcbd( birth, death ));
%! U2 = 1-q(1);
%! Q2 = dot( [0:K], q );
%! assert( U1, U2, 1e-4 );
%! assert( Q1, Q2, 1e-4 );
%!demo
%! ## Given a M/M/1/K queue, compute the steady-state probability pk
%! ## of having n requests in the systen.
%! lambda = 0.2;
%! mu = 0.25;
%! K = 10;
%! n = 0:10;
%! pn = qsmm1k(lambda, mu, K, n);
%! plot(n, pn, "-o", "linewidth", 2);
%! xlabel("N. of requests (n)");
%! ylabel("p_n");
%! title(sprintf("M/M/1/%d system, \\lambda = %g, \\mu = %g", K, lambda, mu));
|