1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2018, 2019 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}, @var{p0}] =} qsmminf (@var{lambda}, @var{mu})
## @deftypefnx {Function File} {@var{pk} =} qsmminf (@var{lambda}, @var{mu}, @var{k})
##
## Compute utilization, response time, average number of requests and throughput for an infinite-server queue.
##
## The @math{M/M/\infty} system has an infinite number of identical
## servers. Such a system is always stable (i.e., the mean queue
## length is always finite) for any arrival and service rates.
##
## @cindex @math{M/M/}inf system
##
## @tex
## The steady-state probability @math{\pi_k} that there are @math{k}
## requests in the system, @math{k @geq{} 0}, can be computed as:
##
## $$
## \pi_k = {1 \over k!} \left( \lambda \over \mu \right)^k e^{-\lambda / \mu}
## $$
## @end tex
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{lambda}
## Arrival rate (@code{@var{lambda}>0}).
##
## @item @var{mu}
## Service rate (@code{@var{mu}>0}).
##
## @item @var{k}
## Number of requests in the system (@code{@var{k} @geq{} 0}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{U}
## Traffic intensity (defined as @math{\lambda/\mu}). Note that this is
## different from the utilization, which in the case of @math{M/M/\infty}
## centers is always zero.
##
## @cindex traffic intensity
##
## @item @var{R}
## Service center response time.
##
## @item @var{Q}
## Average number of requests in the system (which is equal to the
## traffic intensity @math{\lambda/\mu}).
##
## @item @var{X}
## Throughput (which is always equal to @code{@var{X} = @var{lambda}}).
##
## @item @var{p0}
## Steady-state probability that there are no requests in the system
##
## @item @var{pk}
## Steady-state probability that there are @var{k} requests in the
## system (including the one being served).
##
## @end table
##
## If this function is called with less than three arguments,
## @var{lambda} and @var{mu} can be vectors of the same size. In this
## case, the results will be vectors as well.
##
## @strong{REFERENCES}
##
## @itemize
## @item
## G. Bolch, S. Greiner, H. de Meer and K. Trivedi, @cite{Queueing Networks
## and Markov Chains: Modeling and Performance Evaluation with Computer
## Science Applications}, Wiley, 1998, Section 6.4
## @end itemize
##
## @seealso{qsmm1,qsmmm,qsmmmk}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function [U_or_pk R Q X p0] = qsmminf( lambda, mu, k )
if ( nargin < 2 || nargin > 3 )
print_usage();
endif
( isvector(lambda) && isvector(mu) ) || ...
error( "lambda and mu must be vectors" );
[ err lambda mu ] = common_size( lambda, mu );
if ( err )
error( "Parameters are of incompatible size" );
endif
lambda = lambda(:)';
mu = mu(:)';
( all( lambda>0 ) && all( mu>0 ) ) || ...
error( "lambda and mu must be >0" );
if (nargin < 3)
U_or_pk = Q = lambda ./ mu; # Traffic intensity.
p0 = exp(-lambda./mu); # probability that there are 0 requests in the system
R = 1 ./ mu;
X = lambda;
else
(length(lambda) == 1) || error("lambda must be a scalar if this function is called with three arguments");
isvector(k) || error("k must be a vector");
all(k>=0 )|| error("k must be >= 0");
## expn does not support array arguments, hence we must use arrayfun()
U_or_pk = arrayfun(@(x) expn(lambda/mu, x) * exp(-lambda/mu), k);
endif
endfunction
%!test
%! fail( "qsmminf( [1 2], [1 2 3] )", "incompatible size");
%! fail( "qsmminf( [-1 -1], [1 1] )", ">0" );
%!demo
%! ## Given a M/M/inf and M/M/m queue, compute the steady-state probability pk
%! ## of having k requests in the systen.
%! lambda = 5;
%! mu = 1.1;
%! m = 5;
%! k = 0:20;
%! pk_inf = qsmminf(lambda, mu, k);
%! pk_m = qsmmm(lambda, mu, 5, k);
%! plot(k, pk_inf, "-o;M/M/\\infty;", "linewidth", 2, ...
%! k, pk_m, "-x;M/M/5;", "linewidth", 2);
%! xlabel("N. of requests (k)");
%! ylabel("P_k");
%! title(sprintf("M/M/\\infty and M/M/%d systems, \\lambda = %g, \\mu = %g", m, lambda, mu));
|