File: ctmc.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,288 kB
  • sloc: makefile: 56
file content (313 lines) | stat: -rw-r--r-- 9,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018, 2020, 2024 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{p} =} ctmc (@var{Q})
## @deftypefnx {Function File} {@var{p} =} ctmc (@var{Q}, @var{t}, @var{p0})
##
## @cindex Markov chain, continuous time
## @cindex continuous time Markov chain
## @cindex Markov chain, state occupancy probabilities
## @cindex stationary probabilities
## @cindex CTMC
##
## Compute stationary or transient state occupancy probabilities for a continuous-time Markov chain.
##
## With a single argument, compute the stationary state occupancy
## probabilities @math{@var{p}(1), @dots{}, @var{p}(N)} for a
## continuous-time Markov chain with finite state space @math{@{1, @dots{},
## N@}} and @math{N \times N} infinitesimal generator matrix @var{Q}.
## With three arguments, compute the state occupancy probabilities
## @math{@var{p}(1), @dots{}, @var{p}(N)} that the system is in state @math{i}
## at time @var{t}, given initial state occupancy probabilities
## @math{@var{p0}(1), @dots{}, @var{p0}(N)} at time 0.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{Q}(i,j)
## Infinitesimal generator matrix. @var{Q} is a @math{N \times N} square
## matrix where @code{@var{Q}(i,j)} is the transition rate from state
## @math{i} to state @math{j}, for @math{1 @leq{} i \neq j @leq{} N}.
## @var{Q} must satisfy the property that @math{\sum_{j=1}^N Q_{i, j} =
## 0}
##
## @item @var{t}
## Time at which to compute the transient probability (@math{t @geq{}
## 0}). If omitted, the function computes the steady state occupancy
## probability vector.
##
## @item @var{p0}(i)
## probability that the system is in state @math{i} at time 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{p}(i)
## If this function is invoked with a single argument, @code{@var{p}(i)}
## is the steady-state probability that the system is in state @math{i},
## @math{i = 1, @dots{}, N}. If this function is invoked with three
## arguments, @code{@var{p}(i)} is the probability that the system is in
## state @math{i} at time @var{t}, given the initial occupancy
## probabilities @var{p0}(1), @dots{}, @var{p0}(N).
##
## @end table
##
## @seealso{dtmc}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function q = ctmc( Q, t, p0 )

  persistent epsilon = 10*eps;

  if ( nargin != 1 && nargin != 3 )
    print_usage();
  endif

  [N err] = ctmcchkQ(Q);

  ( N>0 ) || ...
      error(err);

  if ( nargin == 1 ) # steady-state analysis

    ## non zero columns
    nonzero=find( any(abs(Q)>epsilon,1 ) );
    if ( length(nonzero) == 0 )
      error( "Q is the zero matrix" );
    endif

    normcol = nonzero(1); # normalization condition column

    ## force probability of unvisited states to zero
    for i=find( all(abs(Q)<epsilon,1) )
      Q(i,i) = 1;
    endfor

    ## assert( rank(Q) == N-1 );

    Q(:,normcol) = 1; # add normalization condition
    b = zeros(1,N); b(normcol)=1;
    q = b/Q; # qQ = b;

  else # transient analysis

    ( isscalar(t) && t>=0 ) || ...
        error("t must be a scalar >= 0");

    ( isvector(p0) && length(p0) == N && all(p0>=0) && abs(sum(p0)-1.0)<N*eps ) || ...
        error( "p0 must be a probability vector" );

    p0 = p0(:)'; # make p0 a row vector

    q = p0*expm(Q*t);

  endif

endfunction

%!test
%! Q = [-1 1 0 0; 2 -3 1 0; 0 2 -3 1; 0 0 2 -2];
%! q = ctmc(Q);
%! assert( q*Q, 0*q, 1e-5 );
%! assert( q, [8/15 4/15 2/15 1/15], 1e-5 );

## test failure patterns
%!test
%! fail( "ctmc([1 1; 1 1])", "infinitesimal" );
%! fail( "ctmc([1 1 1; 1 1 1])", "square" );

## test unvisited state.
%!test
%! Q = [0  0  0; ...
%!      0 -1  1; ...
%!      0  1 -1];
%! q = ctmc(Q);
%! assert( q*Q, 0*q, 1e-5 );
%! assert( q, [ 0 0.5 0.5 ], 1e-5 );

## Example 3.1 p. 123 Bolch et al.
%!test
%! lambda = 1;
%! mu = 2;
%! Q = [ -lambda lambda 0 0   ; ...
%!       mu -(lambda+mu) lambda 0  ; ...
%!       0 mu -(lambda+mu) lambda ; ...
%!       0 0 mu -mu ];
%! q = ctmc(Q);
%! assert( q, [8/15 4/15 2/15 1/15], 1e-5 );

## Example 3.4 p. 138 Bolch et al.
%!test
%! Q = [ -1 0.4 0.6 0 0 0; ...
%!       2 -3 0 0.4 0.6 0; ...
%!       3 0 -4 0 0.4 0.6; ...
%!       0 2 0 -2 0 0; ...
%!       0 3 2 0 -5 0; ...
%!       0 0 3 0 0 -3 ];
%! q = ctmc(Q);
%! assert( q, [0.6578 0.1315 0.1315 0.0263 0.0263 0.0263], 1e-4 );

## Example 3.2 p. 128 Bolch et al.
%!test
%! Q = [-1 1 0 0 0 0 0; ...
%!      0 -3 1 0 2 0 0; ...
%!      0 0 -3 1 0 2 0; ...
%!      0 0 0 -2 0 0 2; ...
%!      2 0 0 0 -3 1 0; ...
%!      0 2 0 0 0 -3 1; ...
%!      0 0 2 0 0 0 -2 ];
%! q = ctmc(Q);
%! assert( q, [0.2192 0.1644 0.1507 0.0753 0.1096 0.1370 0.1438], 1e-4 );

%!test
%! a = 0.2;
%! b = 0.8;
%! Q = [-a a; b -b];
%! qlim = ctmc(Q);
%! q = ctmc(Q, 100, [1 0]);
%! assert( qlim, q, 1e-5 );

## Example on p. 172 of [Tij03]
%!test
%! ll = 0.1;
%! mu = 100;
%! eta = 5;
%! Q = zeros(9,9);
%! ## 6--1, 7=sleep2 8=sleep1 9=crash
%! Q(6,5) = 6*ll;
%! Q(5,4) = 5*ll;
%! Q(4,3) = 4*ll;
%! Q(3,2) = 3*ll;
%! Q(2,1) = 2*ll;
%! Q(2,7) = mu;
%! Q(1,9) = ll;
%! Q(1,8) = mu;
%! Q(8,9) = ll;
%! Q(7,8) = 2*ll;
%! Q(7,6) = eta;
%! Q(8,6) = eta;
%! Q -= diag(sum(Q,2));
%! q0 = zeros(1,9); q0(6) = 1;
%! q = ctmc(Q,10,q0);
%! assert( q(9), 0.000504, 1e-6 );
%! q = ctmc(Q,2,q0);
%! assert( q, [3.83e-7 1.938e-4 0.0654032 0.2216998 0.4016008 0.3079701 0.0030271 0.0000998 5e-6], 1e-5 );
%! # Compute probability that no shuttle needs to leave during 10 years
%! Q(7,:) = Q(8,:) = 0; # make states 7 and 8 absorbing
%! q = ctmc(Q,10,q0);
%! assert( 1-sum(q(7:9)), 0.3901, 1e-4 );

%!demo
%! Q = [ -1  1; ...
%!        1 -1  ];
%! q = ctmc(Q)

%!demo
%! a = 0.2;
%! b = 0.15;
%! Q = [ -a a; b -b];
%! T = linspace(0,14,50);
%! pp = zeros(2,length(T));
%! for i=1:length(T)
%!   pp(:,i) = ctmc(Q,T(i),[1 0]);
%! endfor
%! ss = ctmc(Q); # compute steady state probabilities
%! plot( T, pp(1,:), "b;p_0(t);", "linewidth", 2, ...
%!       T, ss(1)*ones(size(T)), "b;Steady State;", ...
%!       T, pp(2,:), "r;p_1(t);", "linewidth", 2, ...
%!       T, ss(2)*ones(size(T)), "r;Steady State;" );
%! xlabel("Time");
%! legend("boxoff");

## This example is from: David I. Heimann, Nitin Mittal, Kishor S. Trivedi,
## "Availability and Reliability Modeling for Computer Systems", sep 1989,
## section 2.4.
## **NOTE** the value of \pi_0 reported in the paper appears to be wrong
## (it is written as 0.00000012779, but probably should be 0.0000012779).
%!test
%! sec = 1;
%! min = 60*sec;
%! hour = 60*min;
%! ## the state space enumeration is {2, RC, RB, 1, 0}
%! a = 1/(10*min);    # 1/a = duration of reboot (10 min)
%! b = 1/(30*sec);    # 1/b = reconfiguration time (30 sec)
%! g = 1/(5000*hour); # 1/g = processor MTTF (5000 hours)
%! d = 1/(4*hour);    # 1/d = processor MTTR (4 hours)
%! c = 0.9;           # coverage
%! Q = [ -2*g 2*c*g 2*(1-c)*g      0  0 ; ...
%!          0    -b         0      b  0 ; ...
%!          0     0        -a      a  0 ; ...
%!          d     0         0 -(g+d)  g ; ...
%!          0     0         0      d -d];
%! p = ctmc(Q);
%! assert( p, [0.9983916, 0.000002995, 0.0000066559, 0.00159742, 0.0000012779], 1e-6 );
%! Q(3,:) = Q(5,:) = 0; # make states 3 and 5 absorbing
%! p0 = [1 0 0 0 0];
%! MTBF = ctmcmtta(Q, p0) / hour;
%! assert( fix(MTBF), 24857);

%!demo
%! ##
%! ## The code below is used in the paper: "M. Marzolla,
%! ## "A GNU Octave package for Queueing Networks and Markov Chains analysis"
%! ## (submitted to the ACM Transactions on Mathematical Software)
%! ## to analyze the reliability model from Figure 2. The model
%! ## has been originally described in the paper:
%! ##
%! ## David I. Heimann, Nitin Mittal, Kishor S. Trivedi, "Availability
%! ## and Reliability Modeling for Computer Systems",
%! ## Marshall C. Yovits (Ed.), Advances in Computers, Elsevier, Volume 31,
%! ## 1990, Pages 175-233, ISSN 0065-2458, ISBN 9780120121311, DOI
%! ## https://doi.org/10.1016/S0065-2458(08)60154-0. sep 1989, section
%! ## 2.5.
%!
%! mm = 60; hh = 60*mm; dd = 24*hh; yy = 365*dd;
%! a = 1/(10*mm);    # 1/a = duration of reboot (10 min)
%! b = 1/30;         # 1/b = reconfiguration time (30 sec)
%! g = 1/(5000*hh);  # 1/g = processor MTTF (5000 h)
%! d = 1/(4*hh);     # 1/d = processor MTTR (4 h)
%! c = 0.9;          # recovery probability
%! [TWO,RC,RB,ONE,ZERO] = deal(1,2,3,4,5);
%! ##      2    RC      RB        1     0
%! Q = [ -2*g  2*c*g 2*(1-c)*g    0     0; ...  # 2
%!         0    -b       0        b     0; ...  # RC
%!         0     0      -a        a     0; ...  # RB
%!         d     0       0     -(g+d)   g; ...  # 1
%!         0     0       0        d    -d];     # 0
%! p = ctmc(Q);
%!
%! disp("minutes/year spent in RC");
%! p(RC)*yy/mm  # minutes/year spent in RC
%! disp("minutes/year spent in RB");
%! p(RB)*yy/mm  # minutes/year spent in RB
%! disp("minutes/year spent in 0");
%! p(ZERO)*yy/mm  # minutes/year spent in 0
%!
%! Q(ZERO,:) = Q(RB,:) = 0; # make states {0, RB} absorbing
%! p0 = [ 1 0 0 0 0 ] ; # initial state occupancy probabiliies
%! disp("MTBF (years)");
%! MTBF = ctmcmtta(Q, p0) / yy # MTBF (years)