File: ctmctaexps.m

package info (click to toggle)
octave-queueing 1.2.8-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,288 kB
  • sloc: makefile: 56
file content (155 lines) | stat: -rw-r--r-- 5,072 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{t}, @var{p0})
## @deftypefnx {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{p0})
##
## @cindex Markov chain, continuous time
## @cindex time-alveraged sojourn time, CTMC
## @cindex continuous time Markov chain
## @cindex CTMC
##
## Compute the @emph{time-averaged sojourn time} @code{@var{M}(i)},
## defined as the fraction of the time interval @math{[0,t]} (or until
## absorption) spent in state @math{i}, assuming that the state
## occupancy probabilities at time 0 are @var{p}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{Q}(i,j)
## Infinitesimal generator matrix. @code{@var{Q}(i,j)} is the transition
## rate from state @math{i} to state @math{j},
## @math{1 @leq{} i,j @leq{} N}, @math{i \neq j}. The
## matrix @var{Q} must also satisfy the condition @math{\sum_{j=1}^N Q_{i,j} = 0}
##
## @item @var{t}
## Time. If omitted, the results are computed until absorption.
##
## @item @var{p0}(i)
## initial state occupancy probabilities. @code{@var{p0}(i)} is the
## probability that the system is in state @math{i} at time 0, @math{i
## = 1, @dots{}, N}
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{M}(i)
## When called with three arguments, @code{@var{M}(i)} is the expected
## fraction of the interval @math{[0,t]} spent in state @math{i}
## assuming that the state occupancy probability at time zero is
## @var{p}. When called with two arguments, @code{@var{M}(i)} is the
## expected fraction of time until absorption spent in state @math{i};
## in this case the mean time to absorption is @code{sum(@var{M})}.
##
## @end table
##
## @seealso{ctmcexps}
##
## @end deftypefn

## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/

function M = ctmctaexps( Q, varargin )

  persistent epsilon = 10*eps;

  if ( nargin < 2 || nargin > 3 )
    print_usage();
  endif

  L = ctmcexps(Q,varargin{:});
  M = L ./ repmat(sum(L,2),1,columns(L));
endfunction
%!test
%! Q = [ 0 0.1 0 0; ...
%!       0.9 0 0.1 0; ...
%!       0 0.9 0 0.1; ...
%!       0 0 0 0 ];
%! Q -= diag( sum(Q,2) );
%! M = ctmctaexps(Q, [1 0 0 0]);
%! assert( sum(M), 1, 10*eps );

%!demo
%! lambda = 0.5;
%! N = 4;
%! birth = lambda*linspace(1,N-1,N-1);
%! death = zeros(1,N-1);
%! Q = diag(birth,1)+diag(death,-1);
%! Q -= diag(sum(Q,2));
%! t = linspace(1e-5,30,100);
%! p = zeros(1,N); p(1)=1;
%! M = zeros(length(t),N);
%! for i=1:length(t)
%!   M(i,:) = ctmctaexps(Q,t(i),p);
%! endfor
%! clf;
%! plot(t, M(:,1), ";State 1;", "linewidth", 2, ...
%!      t, M(:,2), ";State 2;", "linewidth", 2, ...
%!      t, M(:,3), ";State 3;", "linewidth", 2, ...
%!      t, M(:,4), ";State 4 (absorbing);", "linewidth", 2 );
%! legend("location","east"); legend("boxoff");
%! xlabel("Time");
%! ylabel("Time-averaged Expected sojourn time");

## This example is from: David I. Heimann, Nitin Mittal, Kishor S. Trivedi,
## "Availability and Reliability Modeling for Computer Systems", sep 1989,
## section 2.5
%!demo
%! sec = 1;
%! min = sec*60;
%! hour = 60*min;
%! day = 24*hour;
%!
%! # state space enumeration {2, RC, RB, 1, 0}
%! a = 1/(10*min);    # 1/a = duration of reboot (10 min)
%! b = 1/(30*sec);    # 1/b = reconfiguration time (30 sec)
%! g = 1/(5000*hour); # 1/g = processor MTTF (5000 hours)
%! d = 1/(4*hour);    # 1/d = processor MTTR (4 hours)
%! c = 0.9;           # coverage
%! Q = [ -2*g 2*c*g 2*(1-c)*g      0  0; ...
%!          0    -b         0      b  0; ...
%!          0     0        -a      a  0; ...
%!          d     0         0 -(g+d)  g; ...
%!          0     0         0      d -d];
%! p = ctmc(Q);
%! printf("System availability: %f\n",p(1)+p(4));
%! TT = linspace(0,1*day,101);
%! PP = ctmctaexps(Q,TT,[1 0 0 0 0]);
%! A = At = Abart = zeros(size(TT));
%! A(:) = p(1) + p(4); # steady-state availability
%! for n=1:length(TT)
%!   t = TT(n);
%!   p = ctmc(Q,t,[1 0 0 0 0]);
%!   At(n) = p(1) + p(4); # instantaneous availability
%!   Abart(n) = PP(n,1) + PP(n,4); # interval base availability
%! endfor
%! clf;
%! semilogy(TT,A,";Steady-state;", ...
%!      TT,At,";Instantaneous;", ...
%!      TT,Abart,";Interval base;");
%! ax = axis();
%! ax(3) = 1-1e-5;
%! axis(ax);
%! legend("boxoff");