1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{t}, @var{p0})
## @deftypefnx {Function File} {@var{M} =} ctmctaexps (@var{Q}, @var{p0})
##
## @cindex Markov chain, continuous time
## @cindex time-alveraged sojourn time, CTMC
## @cindex continuous time Markov chain
## @cindex CTMC
##
## Compute the @emph{time-averaged sojourn time} @code{@var{M}(i)},
## defined as the fraction of the time interval @math{[0,t]} (or until
## absorption) spent in state @math{i}, assuming that the state
## occupancy probabilities at time 0 are @var{p}.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{Q}(i,j)
## Infinitesimal generator matrix. @code{@var{Q}(i,j)} is the transition
## rate from state @math{i} to state @math{j},
## @math{1 @leq{} i,j @leq{} N}, @math{i \neq j}. The
## matrix @var{Q} must also satisfy the condition @math{\sum_{j=1}^N Q_{i,j} = 0}
##
## @item @var{t}
## Time. If omitted, the results are computed until absorption.
##
## @item @var{p0}(i)
## initial state occupancy probabilities. @code{@var{p0}(i)} is the
## probability that the system is in state @math{i} at time 0, @math{i
## = 1, @dots{}, N}
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{M}(i)
## When called with three arguments, @code{@var{M}(i)} is the expected
## fraction of the interval @math{[0,t]} spent in state @math{i}
## assuming that the state occupancy probability at time zero is
## @var{p}. When called with two arguments, @code{@var{M}(i)} is the
## expected fraction of time until absorption spent in state @math{i};
## in this case the mean time to absorption is @code{sum(@var{M})}.
##
## @end table
##
## @seealso{ctmcexps}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function M = ctmctaexps( Q, varargin )
persistent epsilon = 10*eps;
if ( nargin < 2 || nargin > 3 )
print_usage();
endif
L = ctmcexps(Q,varargin{:});
M = L ./ repmat(sum(L,2),1,columns(L));
endfunction
%!test
%! Q = [ 0 0.1 0 0; ...
%! 0.9 0 0.1 0; ...
%! 0 0.9 0 0.1; ...
%! 0 0 0 0 ];
%! Q -= diag( sum(Q,2) );
%! M = ctmctaexps(Q, [1 0 0 0]);
%! assert( sum(M), 1, 10*eps );
%!demo
%! lambda = 0.5;
%! N = 4;
%! birth = lambda*linspace(1,N-1,N-1);
%! death = zeros(1,N-1);
%! Q = diag(birth,1)+diag(death,-1);
%! Q -= diag(sum(Q,2));
%! t = linspace(1e-5,30,100);
%! p = zeros(1,N); p(1)=1;
%! M = zeros(length(t),N);
%! for i=1:length(t)
%! M(i,:) = ctmctaexps(Q,t(i),p);
%! endfor
%! clf;
%! plot(t, M(:,1), ";State 1;", "linewidth", 2, ...
%! t, M(:,2), ";State 2;", "linewidth", 2, ...
%! t, M(:,3), ";State 3;", "linewidth", 2, ...
%! t, M(:,4), ";State 4 (absorbing);", "linewidth", 2 );
%! legend("location","east"); legend("boxoff");
%! xlabel("Time");
%! ylabel("Time-averaged Expected sojourn time");
## This example is from: David I. Heimann, Nitin Mittal, Kishor S. Trivedi,
## "Availability and Reliability Modeling for Computer Systems", sep 1989,
## section 2.5
%!demo
%! sec = 1;
%! min = sec*60;
%! hour = 60*min;
%! day = 24*hour;
%!
%! # state space enumeration {2, RC, RB, 1, 0}
%! a = 1/(10*min); # 1/a = duration of reboot (10 min)
%! b = 1/(30*sec); # 1/b = reconfiguration time (30 sec)
%! g = 1/(5000*hour); # 1/g = processor MTTF (5000 hours)
%! d = 1/(4*hour); # 1/d = processor MTTR (4 hours)
%! c = 0.9; # coverage
%! Q = [ -2*g 2*c*g 2*(1-c)*g 0 0; ...
%! 0 -b 0 b 0; ...
%! 0 0 -a a 0; ...
%! d 0 0 -(g+d) g; ...
%! 0 0 0 d -d];
%! p = ctmc(Q);
%! printf("System availability: %f\n",p(1)+p(4));
%! TT = linspace(0,1*day,101);
%! PP = ctmctaexps(Q,TT,[1 0 0 0 0]);
%! A = At = Abart = zeros(size(TT));
%! A(:) = p(1) + p(4); # steady-state availability
%! for n=1:length(TT)
%! t = TT(n);
%! p = ctmc(Q,t,[1 0 0 0 0]);
%! At(n) = p(1) + p(4); # instantaneous availability
%! Abart(n) = PP(n,1) + PP(n,4); # interval base availability
%! endfor
%! clf;
%! semilogy(TT,A,";Steady-state;", ...
%! TT,At,";Instantaneous;", ...
%! TT,Abart,";Interval base;");
%! ax = axis();
%! ax(3) = 1-1e-5;
%! axis(ax);
%! legend("boxoff");
|