1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
## Copyright (C) 2008, 2009, 2010, 2011, 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{p} =} dtmc (@var{P})
## @deftypefnx {Function File} {@var{p} =} dtmc (@var{P}, @var{n}, @var{p0})
##
## @cindex Markov chain, discrete time
## @cindex discrete time Markov chain
## @cindex DTMC
## @cindex Markov chain, stationary probabilities
## @cindex Markov chain, transient probabilities
##
## Compute stationary or transient state occupancy probabilities for a discrete-time Markov chain.
##
## With a single argument, compute the stationary state occupancy
## probabilities @code{@var{p}(1), @dots{}, @var{p}(N)} for a
## discrete-time Markov chain with finite state space @math{@{1, @dots{},
## N@}} and with @math{N \times N} transition matrix
## @var{P}. With three arguments, compute the transient state occupancy
## probabilities @code{@var{p}(1), @dots{}, @var{p}(N)} that the system is in
## state @math{i} after @var{n} steps, given initial occupancy
## probabilities @var{p0}(1), @dots{}, @var{p0}(N).
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{P}(i,j)
## transition probabilities from state @math{i} to state @math{j}.
## @var{P} must be an @math{N \times N} irreducible stochastic matrix,
## meaning that the sum of each row must be 1 (@math{\sum_{j=1}^N
## P_{i, j} = 1}), and the rank of @var{P} must be @math{N}.
##
## @item @var{n}
## Number of transitions after which state occupancy probabilities are computed
## (scalar, @math{n @geq{} 0})
##
## @item @var{p0}(i)
## probability that at step 0 the system is in state @math{i} (vector
## of length @math{N}).
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{p}(i)
## If this function is called with a single argument, @code{@var{p}(i)}
## is the steady-state probability that the system is in state @math{i}.
## If this function is called with three arguments, @code{@var{p}(i)}
## is the probability that the system is in state @math{i}
## after @var{n} transitions, given the probabilities
## @code{@var{p0}(i)} that the initial state is @math{i}.
##
## @end table
##
## @seealso{ctmc}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function p = dtmc( P, n, p0 )
if ( nargin != 1 && nargin != 3 )
print_usage();
endif
[N err] = dtmcchkP(P);
( N>0 ) || ...
error( err );
if ( nargin == 1 ) # steady-state analysis
A = P-eye(N);
A(:,N) = 1; # add normalization condition
rank( A ) == N || ...
warning( "dtmc(): P is reducible" );
b = [ zeros(1,N-1) 1 ];
p = b/A;
else # transient analysis
( isscalar(n) && n>=0 ) || ...
error( "n must be >=0" );
( isvector(p0) && length(p0) == N && all(p0>=0) && abs(sum(p0)-1.0)<N*eps ) || ...
error( "p0 must be a probability vector" );
p0 = p0(:)'; # make p0 a row vector
p = p0*P^n;
endif
endfunction
%!test
%! P = [0.75 0.25; 0.5 0.5];
%! p = dtmc(P);
%! assert( p*P, p, 1e-5 );
%! assert( p, [0.6666 0.3333], 1e-4 );
%!test
%! #Example 2.11 p. 44 Bolch et al.
%! P = [0.5 0.5; 0.5 0.5];
%! p = dtmc(P);
%! assert( p, [0.5 0.5], 1e-3 );
%!test
%! fail("dtmc( [1 1 1; 1 1 1] )", "square");
%!test
%! a = 0.2;
%! b = 0.8;
%! P = [1-a a; b 1-b];
%! plim = dtmc(P);
%! p = dtmc(P, 100, [1 0]);
%! assert( plim, p, 1e-5 );
%!test
%! P = [0 1 0 0 0; ...
%! .25 0 .75 0 0; ...
%! 0 .5 0 .5 0; ...
%! 0 0 .75 0 .25; ...
%! 0 0 0 1 0 ];
%! p = dtmc(P);
%! assert( p, [.0625 .25 .375 .25 .0625], 10*eps );
## "Rat maze" problem (p. 441 of [GrSn97]);
%!test
%! P = zeros(9,9);
%! P(1,[2 4]) = 1/2;
%! P(2,[1 5 3]) = 1/3;
%! P(3,[2 6]) = 1/2;
%! P(4,[1 5 7]) = 1/3;
%! P(5,[2 4 6 8]) = 1/4;
%! P(6,[3 5 9]) = 1/3;
%! P(7,[4 8]) = 1/2;
%! P(8,[7 5 9]) = 1/3;
%! P(9,[6 8]) = 1/2;
%! p = dtmc(P);
%! assert( p, [1/12 1/8 1/12 1/8 1/6 1/8 1/12 1/8 1/12], 10*eps );
%!demo
%! P = zeros(9,9);
%! P(1,[2 4] ) = 1/2;
%! P(2,[1 5 3] ) = 1/3;
%! P(3,[2 6] ) = 1/2;
%! P(4,[1 5 7] ) = 1/3;
%! P(5,[2 4 6 8]) = 1/4;
%! P(6,[3 5 9] ) = 1/3;
%! P(7,[4 8] ) = 1/2;
%! P(8,[7 5 9] ) = 1/3;
%! P(9,[6 8] ) = 1/2;
%! p = dtmc(P);
%! disp(p)
%!demo
%! a = 0.2;
%! b = 0.15;
%! P = [ 1-a a; b 1-b];
%! T = 0:14;
%! pp = zeros(2,length(T));
%! for i=1:length(T)
%! pp(:,i) = dtmc(P,T(i),[1 0]);
%! endfor
%! ss = dtmc(P); # compute steady state probabilities
%! plot( T, pp(1,:), "b+;p_0(t);", "linewidth", 2, ...
%! T, ss(1)*ones(size(T)), "b;Steady State;", ...
%! T, pp(2,:), "r+;p_1(t);", "linewidth", 2, ...
%! T, ss(2)*ones(size(T)), "r;Steady State;" );
%! xlabel("Time Step");
%! legend("boxoff");
|