1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
## Copyright (C) 2012, 2016, 2018 Moreno Marzolla
##
## This file is part of the queueing toolbox.
##
## The queueing toolbox is free software: you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation, either version 3 of the
## License, or (at your option) any later version.
##
## The queueing toolbox is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the queueing toolbox. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##
## @deftypefn {Function File} {@var{L} =} dtmcexps (@var{P}, @var{n}, @var{p0})
## @deftypefnx {Function File} {@var{L} =} dtmcexps (@var{P}, @var{p0})
##
## @cindex expected sojourn times, DTMC
## @cindex DTMC
## @cindex discrete time Markov chain
## @cindex Markov chain, discrete time
##
## Compute the expected number of visits to each state during the first
## @var{n} transitions, or until abrosption.
##
## @strong{INPUTS}
##
## @table @code
##
## @item @var{P}(i,j)
## @math{N \times N} transition matrix. @code{@var{P}(i,j)} is the
## transition probability from state @math{i} to state @math{j}.
##
## @item @var{n}
## Number of steps during which the expected number of visits are
## computed (@math{@var{n} @geq{} 0}). If @code{@var{n}=0}, returns
## @var{p0}. If @code{@var{n} > 0}, returns the expected number of
## visits after exactly @var{n} transitions.
##
## @item @var{p0}(i)
## Initial state occupancy probabilities; @code{@var{p0}(i)} is
## the probability that the system is in state @math{i} at step 0.
##
## @end table
##
## @strong{OUTPUTS}
##
## @table @code
##
## @item @var{L}(i)
## When called with two arguments, @code{@var{L}(i)} is the expected
## number of visits to state @math{i} before absorption. When
## called with three arguments, @code{@var{L}(i)} is the expected number
## of visits to state @math{i} during the first @var{n} transitions.
##
## @end table
##
## @strong{REFERENCES}
##
## @itemize
## @item Grinstead, Charles M.; Snell, J. Laurie (July
## 1997). @cite{Introduction to Probability}, Ch. 11: Markov
## Chains. American Mathematical Society. ISBN 978-0821807491.
## @end itemize
##
## @seealso{ctmcexps}
##
## @end deftypefn
## Author: Moreno Marzolla <moreno.marzolla(at)unibo.it>
## Web: http://www.moreno.marzolla.name/
function L = dtmcexps ( P, varargin )
persistent epsilon = 10*eps;
if ( nargin < 2 || nargin > 3 )
print_usage();
endif
[K err] = dtmcchkP(P);
(K>0) || ...
error(err);
if ( nargin == 2 )
p0 = varargin{1};
else
n = varargin{1};
p0 = varargin{2};
endif
( isvector(p0) && length(p0) == K && all(p0>=0) && abs(sum(p0)-1.0)<epsilon ) || ...
error( "p0 must be a state occupancy probability vector" );
p0 = p0(:)'; # make p0 a row vector
if ( nargin == 3 )
isscalar(n) && n>=0 || ...
error("n must be >= 0");
n = fix(n);
L = zeros(sizeof(p0));
## It is know that
##
## I + P + P^2 + P^3 + ... + P^n = (I-P)^-1 * (I-P^(n+1))
##
## and therefore we could succintly write
##
## L = p0*inv(eye(K)-P)*(eye(K)-P^(n+1));
##
## Unfortunatly, the method above is numerically unstable (at least
## for small values of n), so we use the crude approach below.
PP = p0;
L = zeros(1,K);
for p=0:n
L += PP;
PP *= P;
endfor
else
## identify transient states
tr = find(diag(P) < 1);
k = length(tr); # number of transient states
if ( k == K )
error("There are no absorbing states");
endif
N = zeros(size(P));
tmpN = inv(eye(k) - P(tr,tr)); # matrix N = (I-Q)^-1
N(tr,tr) = tmpN;
L = p0*N;
endif
endfunction
%!test
%! P = dtmcbd([1 1 1 1], [0 0 0 0]);
%! L = dtmcexps(P,[1 0 0 0 0]);
%! t = dtmcmtta(P,[1 0 0 0 0]);
%! assert( L, [1 1 1 1 0] );
%! assert( sum(L), t );
%!test
%! P = dtmcbd(linspace(0.1,0.4,5),linspace(0.4,0.1,5));
%! p0 = [1 0 0 0 0 0];
%! L = dtmcexps(P,0,p0);
%! assert( L, p0 );
|